Hardware Locality (hwloc)
2.12.2rc1

Generated by Doxygen 1.9.8

1 Hardware Locality

1.1 Tableof Contents L e e
1.2hwloc Overview L e e
1.3 Command-line Examples
1.4 Programming Interface L e e e e

1.4.1 Portability e

1.42 APIExample e
1.5Questionsand Bugs L e e e e e e
1.6 History /Credits o e e e e e

2 Installation
2.1 Basic Installation e e
2.2 Optional Dependencies e e e

23 Installing froma Gitclone e

3 Compiling software on top of hwloc's C API
3.1 Compiling on top of hwloc's C APIwithGNUMake
3.2 Compiling on top of hwloc's C APIwithCMake

4 Terms and Definitions
4.1 0DbJECES e e
42Indexesand Sets L e e e e e

4.3 Hierarchy, Tree and Levels e

5 Command-Line Tools
5.1 Istopo and Istopo-no-graphics
5.2hwloc-bind e
5.3 hwloc-calc e
5.4 hwloc-info L e
5.5 hwloc-distrib e
B.BWIOC-PS o e
5.7 hwloc-annotate L
5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir,
5.9 hwloc-dump-hwdata e
5.10 hwloc-gather-topology and hwloc-gather-cpuid oo

6 Environment Variables

7 CPU and Memory Binding Overview
7.1 Binding Policies and Portability
7.2 Joint CPU and Memory Binding (ornot)
7.3 Current Memory Binding Policy

8 1/0 Devices

8.1 Enabling and requirements

—_

0 0 o o M~ N DN

11
11
12

13
13
13

15
15
15
16

19
19
19
19
20
20
20
20
20
20
20

23

27
27
27
28

29

Generated by Doxygen

8.21/00bjects e 29
8.30S deviCeS e 29
8.4 PCldevicesand bridges L e 31
8.5 Consulting I/O devicesand binding e 31
8.8 Examples e e 31

9 Miscellaneous objects 35
9.1 Misc objects added by hwloc 35
9.2 Annotating topologies with Misc objects Lo 35

10 Object attributes 37
10.1 Normal attributes e e 37
10.2 Custom string infos L e e e 37
10.2.1 Hardware Platform Information 38

10.2.2 Operating System Information 38

10.2.3 hwloc Information e 38

10.2.4 CPU Information e 39

10.2.5 0S Device Information 39

10.2.6 Other Object-specific Information 40

10.2.7 User-Given Information 41

11 Topology Attributes: Distances, Memory Attributes and CPU Kinds 43
11.1DiIstances e e e e e e e e 43
11.2 Memory Attributes L e e e 44
T1.3CPUKINAS . . . o o 44

12 Heterogeneous Memory 47
12.1 Memory Tiers and Default nodes 47
12.2 Using Heterogeneous Memory from the command-line 48
12.3 Using Heterogeneous Memory fromthe CAPI o 48
12.3.1 lterating over the list of (heterogeneous) NUMAnodes 49

12.3.2 Iterating over local (heterogeneous) NUMA nodes 49

13 Importing and exporting topologies from/to XML files 51
13.1 libxml2 and minimalistic XML backends 51
13.2 XML import error management L e e e e e 52

14 Synthetic topologies 53
14.1 Synthetic description string L L 53
14.2 Loading a synthetic topology L 54
14.3 Exporting a topology as a syntheticstring L 54

15 Interoperability With Other Software 55
16 Thread Safety 57

Generated by Doxygen

17 Components and plugins 59

17.1 Components enabled by default 59
17.2 Selecting which componentstouse e 59
17.3 Loading components from plugins L 60
17.4 Existing components and plugins L e e 60
18 Embedding hwloc in Other Software 63
18.1 Using hwloc's M4 Embedding Capabilities 63
18.2 Example Embedding hwloc L 64
19 Frequently Asked Questions (FAQ) 67
19.1 CONCEPLS . . . o o o e e 67
19.1.1 I only need binding, or the number of cores, why should luse hwloc ? 67
19.1.2 What may | disable to make hwloc faster?, 67
19.1.3 Should | use logical or physical/OS indexes? andhow? 68
19.1.4 hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.? 68
19.1.5 hwloc only has a one-dimensional view of the architecture, it ignores distances? 69
19.1.6 What are these Group objects in my topology? 69
19.1.7 What happens if my topology is asymmetric?, . 69

19.1.8 What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in
the system? L L e 70
19.1.9 How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc? 70
19.2 Advanced e e e e e e e e 71

19.2.1 | do not want hwloc to rediscover my enormous machine topology every time | rerun a process 71

19.2.2 How many topologies may l use in my program? 71
19.2.3 How to avoid memory waste when manipulating multiple similar topologies? 72
19.2.4 How do | annotate the topology with private notes? 72
19.2.5 How do | create a custom heterogeneous and asymmetric topology? 72
19.3Caveats e e e e e 73
19.3.1 Why is Istopo slow? L e 73
19.3.2 Does hwloc require privileged access? 73
19.3.3 What should | do when hwloc reports "operating system" warnings? 74
19.3.4 Why does Valgrind complain about hwloc memory leaks? 74
19.4 Platform-specific e e e e e 75
19.4.1 How do | enable ROCm SMI and select which versiontouse? 75
19.4.2 How do | enable CUDA and select which CUDA versiontouse? 75
19.4.3 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor? 75
19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor? 75
19.4.5 How do | build hwloc for BlueGene/Q? 76
19.4.6 How do | build hwloc for Windows? 76
19.4.7 How to get useful topology information on NetBSD? 76
19.4.8 Why does binding failon AIX? 76
19.5 Compatibility between hwloc versions L 77

Generated by Doxygen

19.5.1 How do | handle APl changes? 77
19.5.2 What is the difference between API and library version numbers? 77
19.5.3 How do | handle ABl breaks? 77
19.5.4 Are XML topology files compatible between hwloc releases? 78
19.5.5 Are synthetic strings compatible between hwloc releases? 78

19.5.6 Is it possible to share a shared-memory topology between different hwloc releases? 78

20 Upgrading to the hwloc 2.0 API 79
20.1 New Organization of NUMA nodes and Memory 79
20.1.1 Memory children L 79

20.1.2 Examples e e 79
20.1.3NUMA level and depth 80

20.1.4 Finding Local NUMA nodes and looking at Childrenand Parents 80

20.2 4 Kinds of Objects and Children 81
20.2.1 /O and Misc children e 81
20.2.2Kindsof objects 81

20.3 HWLOC_OBJ_CACHE replaced o o i e s e e e e e 81
20.4 allowed_cpuset and allowed_nodeset only in the maintopology 82
20.5 Objectdepths are now signed int e 82
20.6 Memory attributes become NUMANode-specific 82
20.7 Topology configuration changes 82
20.8 XML changes L e 83
20.9 Distances APl totally rewritten L 83
20.10 Return values of functions L 83
20.11 Misc APlchanges e 83
20.12 APlremovals and deprecations e 84

21 Topic Index 85
211 TOPICS . . o o e e e e e 85

22 Data Structure Index 87
221 Data Structures L e e e 87

23 Topic Documentation 89
23.1 Errorreporting inthe APL. o 89
232 APIVErSION o e e e 89
23.2.1 Detailed Description L e 89

23.2.2 Macro Definition Documentationo 89

23.2.2.1 HWLOC_API_VERSION 89

23.2.22 HWLOC_COMPONENT_ABI e 89

23.2.3 Function Documentation 90

23.2.3.1 hwloc_get_api_version() 90

23.3 Object Sets (hwloc_cpuset tand hwloc_nodeset t) 90
23.3.1 Detailed Descriptiono 90

Generated by Doxygen

23.3.2 Typedef Documentation 90
23.3.21 hwloc_const_cpuset_t L 90
23.3.2.2hwloc_const nodeset t 90
23.3.23 hwloc_cpuset_t L 90
23.3.24 hwloc_nodeset t 90

23.4 0bject TYPES o o e e e e e 91

23.4.1 Detailed Description L 91

23.4.2 Macro Definition Documentationo 91
23.421 HWLOC_TYPE_UNORDERED i 91

23.4.3 Typedef Documentation e 91
23.4.3.1 hwloc_obj_bridge_type t 91
23.4.32hwloc_obj_cache type t 91
23.4.33 hwloc_obj_osdev_type t L 91

23.4.4 Enumeration Type Documentationo 92
23.4.4.1 hwloc_obj_bridge_type_e 92
23.4.42 hwloc_obj_cache type e 92
23.4.43 hwloc_obj_osdev_type_e 92
23.4.4.4hwloc_obj_type_t 92

23.4.5 Function Documentation 94
23.4.5.1 hwloc_compare_types() o e 94

23.5 Object Structure and Attributes L 95

23.5.1 Detailed Description e 95

23.5.2 Typedef Documentation L e 95
23521 hwloc_obj t 95

23.6 Topology Creation and Destruction e 95

23.6.1 Detailed Description 95

23.6.2 Typedef Documentation e 95
23.6.2.1 hwloc_topology t 95

23.6.3 Function Documentation 96
23.6.3.1 hwloc_topology_abi_check() 96
23.6.3.2 hwloc_topology_check() 96
23.6.3.3 hwloc_topology_destroy() 96
23.6.3.4 hwloc_topology_dup()« .« o o 96
23.6.3.5 hwloc_topology_init() 97
23.6.3.6 hwloc_topology_load() 97

23.7 Object levels, depths and types e 97

23.7.1 Detailed Description L e e 98

23.7.2 Enumeration Type Documentation 98
23.7.2.1 hwloc_get_type_depth_e L 98

23.7.3 Function Documentation L 98
23.7.3.1 hwloc_get_depth_type() o . 98
23.7.3.2 hwloc_get_memory_parents_depth() 99

Generated by Doxygen

vi

23.7.3.3 hwloc_get_nbobjs_by_depth() 99
23.7.3.4 hwloc_get_nbobjs_by_type() o 99
23.7.3.5 hwloc_get_next_obj_by depth()o 99
23.7.3.6 hwloc_get_next_obj_by type()o 100
23.7.3.7 hwloc_get_obj_by depth() 100
23.7.3.8 hwloc_get_obj_by type() 100
23.7.3.9 hwloc_get_root_obj() 100
23.7.3.10 hwloc_get_type depth() o 100
23.7.3.11 hwloc_get_type_or_above depth() 101
23.7.3.12 hwloc_get_type_or_below depth(). 101
23.7.3.13 hwloc_topology_get_depth()o 101

23.8 Converting between Object Types and Attributes, and Strings 102
23.8.1 Detailed Description L e 102
23.8.2 Function Documentation L Lo 102
23.8.2.1 hwloc_obj_attr_snprintf() 102
23.8.2.2 hwloc_obj_type_snprintf() L 102
23.8.2.3 hwloc_obj_type_string() 102
23.8.24 hwloc_type_sscanf() o . 103
23.8.2.5 hwloc_type_sscanf_as_depth() 103

23.9 Consulting and Adding Info Attributes 103
23.9.1 Detailed Description 104
23.9.2 Function Documentation 104
23.9.2.1 hwloc_obj_add_info() 104
23.9.2.2 hwloc_obj_get_info_by name()o 104
23.9.2.3 hwloc_obj_set_subtype() 104

23.10 CPUDbINdiNng o e e e 105
23.10.1 Detailed Description o e e 105
23.10.2 Enumeration Type Documentation 106
23.10.2.1 hwloc_cpubind_flags_t 106
23.10.3 Function Documentation 106
23.10.3.1 hwloc_get_cpubind() 106
23.10.3.2 hwloc_get_last_cpu_location() 107
23.10.3.3 hwloc_get_proc_cpubind()o 107
23.10.3.4 hwloc_get_proc_last_cpu_location() 107
23.10.3.5 hwloc_get thread cpubind() 108
23.10.3.6 hwloc_set_cpubind() 108
23.10.3.7 hwloc_set_proc_cpubind() 108
23.10.3.8 hwloc_set_thread cpubind()o 109

23.11 Memory binding e e 109
23.11.1 Detailed Description e e e 110
23.11.2 Enumeration Type Documentationo o 110
23.11.2.1 hwloc_membind_flags_t o 110

Generated by Doxygen

vii

23.11.2.2 hwloc_membind_policy t 111
23.11.3 Function Documentation 112
23.11.3.1 hwloc_alloc() e e 112
23.11.3.2 hwloc_alloc_membind() L 112
23.11.8.3 hwloc_alloc_membind_policy() o o 113
23.11.8.4 hwloc_free() o o e 113
23.11.3.5 hwloc_get_area_membind() Lo 113
23.11.3.6 hwloc_get_area_memlocation() 114
23.11.8.7 hwloc_get_ membind() 114
23.11.3.8 hwloc_get_proc_membind() 115
23.11.3.9 hwloc_set_area_membind() 115
23.11.3.10 hwloc_set_ membind() L 116
23.11.3.11 hwloc_set_proc_membind() 116

23.12 Changing the Source of Topology Discovery 116
23.12.1 Detailed Description 117
23.12.2 Enumeration Type Documentation oL 117
23.12.2.1 hwloc_topology_components_flag_.e 117

23.12.3 Function Documentation 117
23.12.3.1 hwloc_topology_set_components() 117
23.12.3.2 hwloc_topology_set_pid() o 117
23.12.3.3 hwloc_topology_set_synthetic() L. 118
23.12.3.4 hwloc_topology_set_ xml() 118
23.12.3.5 hwloc_topology_set_xmlbuffer() Lo 119

23.13 Topology Detection Configurationand Query o 119
23.13.1 Detailed Description e e 120
23.13.2 Enumeration Type Documentation oo 120
23.13.2.1 hwloc_topology_flags_ e 120
23.13.2.2 hwloc_type_filter_e 124
23.13.3 Function Documentation 124
23.13.3.1 hwloc_topology_get_flags() Lo 124
23.13.3.2 hwloc_topology_get_support() 125
23.13.3.3 hwloc_topology_get_type filter()o 125
23.13.3.4 hwloc_topology_get_userdata() 125
23.13.3.5 hwloc_topology_is_thissystem() oL 126
23.13.3.6 hwloc_topology_set_all_types_filter() 126
23.13.3.7 hwloc_topology_set_cache_types_filter() 126
23.13.8.8 hwloc_topology_set_flags() o o 126
23.13.3.9 hwloc_topology_set_icache_types filter() 127
23.13.3.10 hwloc_topology_set_io_types_filter() 127
23.13.3.11 hwloc_topology_set_type_filter()o 127
23.13.3.12 hwloc_topology_set_userdata() L. 127

23.14 Modifying aloaded Topology o o 127

Generated by Doxygen

viii

23.14.1 Detailed Description e 128
23.14.2 Enumeration Type Documentationo 128
23.14.21 hwloc_allow_flags_e L 128
23.14.2.2 hwloc_restrict_flags_ e 128
23.14.3 Function Documentationo 129
23.14.3.1 hwloc_obj_add_other_obj_sets() 129
23.14.3.2 hwloc_topology_alloc_group_object() 129
23.14.3.3 hwloc_topology_allow() 129
23.14.3.4 hwloc_topology_free_group_object() 130
23.14.3.5 hwloc_topology_insert_group_object() 130
23.14.3.6 hwloc_topology_insert_misc_object() 131
23.14.3.7 hwloc_topology _refresh() 131
23.14.3.8 hwloc_topology_restrict()o 132
23.15Kinds of object Type L 132
23.15.1 Detailed Description e 132
23.15.2 Function Documentation 133
23.15.2.1 hwloc_obj_type_is_cache() o 133
23.15.2.2 hwloc_obj_type is_dcache() L 133
23.15.2.3 hwloc_obj_type_is_icache()o 133
23.15.2.4 hwloc_obj_type_is_io() 133
23.15.2.5 hwloc_obj_type_is_memory() 133
23.15.2.6 hwloc_obj_type_is_normal() 134

23.16 Finding Objectsinside a CPU set 134
23.16.1 Detailed Description L e 134
23.16.2 Function Documentationo 134
23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset() 134
23.16.2.2 hwloc_get_largest_objs_inside_cpuset() 134
23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by depth() 135
23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type() 135
23.16.2.5 hwloc_get_next_obj_inside_cpuset_by depth() 135
23.16.2.6 hwloc_get_next_obj_inside_cpuset by type() 136
23.16.2.7 hwloc_get_obj_index_inside_cpuset() 136
23.16.2.8 hwloc_get_obj_inside_cpuset_by depth() 137
23.16.2.9 hwloc_get_obj_inside_cpuset_by type(). 137

23.17 Finding Objects covering atleast CPUset 137
23.17.1 Detailed Description e e 137
23.17.2 Function Documentation L 137
23.17.2.1 hwloc_get_child_covering_cpuset() 137
23.17.2.2 hwloc_get_next_obj_covering_cpuset_by depth() 138
23.17.2.3 hwloc_get_next_obj_covering_cpuset_by type() 138
23.17.2.4 hwloc_get_obj_covering_cpuset() oL 139

23.18 Looking at Ancestor and Child Objects 139

Generated by Doxygen

23.18.1 Detailed Description e 139
23.18.2 Function Documentation 139
23.18.2.1 hwloc_get_ancestor_obj by depth() 139

23.18.2.2 hwloc_get_ancestor_obj by type() 139

23.18.2.3 hwloc_get_common_ancestor_obj() oL 140

23.18.2.4 hwloc_get_next_child() 140

23.18.2.5 hwloc_obj_is_in_subtree()o 140

23.19 Looking at Cache Objects e 141
23.19.1 Detailed Description L e 141
23.19.2 Function Documentation 141
23.19.2.1 hwloc_get_cache_covering_cpuset() 141

23.19.2.2 hwloc_get_cache_type depth() 141

23.19.2.3 hwloc_get_shared_cache_covering_obj() 141

23.20 Finding objects, miscellaneous helpers Lo 142
23.20.1 Detailed Description e 142
23.20.2 Function Documentation 142
23.20.2.1 hwloc_bitmap_singlify_per_core() L. 142

23.20.2.2 hwloc_get_closest_objs() o 142

23.20.2.3 hwloc_get_numanode_obj_by os_index() 143

23.20.2.4 hwloc_get_obj_below_array by type() 143

23.20.2.5 hwloc_get_obj_below_by type() oL 143

23.20.2.6 hwloc_get_obj_with_same_locality() 144

23.20.2.7 hwloc_get_pu_obj by os_index()o 144

23.21 Distributing items over atopology L 144
23.21.1 Detailed Description o e e 145
23.21.2 Enumeration Type Documentationo 145
23.21.2.1 hwloc_distrib_flags_e L 145

23.21.83 Function Documentationo 145
23.21.3.1 hwloc_distrib() 145

23.22 CPU and node sets of entire topologies 145
28.22.1 Detailed Description L 146
23.22.2 Function Documentation 146
23.22.2.1 hwloc_topology_get_allowed_cpuset() 146

23.22.2.2 hwloc_topology_get_allowed_nodeset() 146

23.22.2.3 hwloc_topology_get_complete_cpuset() 146

23.22.2.4 hwloc_topology_get_complete_nodeset() 147

23.22.2.5 hwloc_topology_get_topology_cpuset() 147

23.22.2.6 hwloc_topology_get_topology_nodeset() 147

23.23 Converting between CPU setsand node sets 148
23.23.1 Detailed Description e e 148
23.23.2 Function Documentation 148
23.23.2.1 hwloc_cpuset_from_nodeset() oo 148

Generated by Doxygen

23.23.2.2 hwloc_cpuset_to_nodeset() 148

23.24 Finding /O objects L e e 148
23.24.1 Detailed Description L e e 149
23.24.2 Function Documentation 149

23.24.2.1 hwloc_bridge_covers_pcibus()o o 149
23.24.2.2 hwloc_get_next_bridge() L 149
23.24.23 hwloc_get next_osdev() 149
23.24.2.4 hwloc_get_next_pcidev() L 149
23.24.2.5 hwloc_get_non_io_ancestor obj() 149
23.24.2.6 hwloc_get_pcidev_by busid()o 150
23.24.2.7 hwloc_get_pcidev_by_busidstring() 150

23.25 The bitmap APl e e 150
23.25.1 Detailed Description e e 151
23.25.2 Macro Definition Documentationo 152

23.25.2.1 hwloc_bitmap_foreach_begino 152
23.25.2.2 hwloc_bitmap_foreach_endo L. 152
23.25.83 Typedef Documentation 152
23.25.3.1 hwloc_bitmap_t. 152
23.25.3.2 hwloc_const_bitmap_t L 152
23.25.4 Function Documentation L 152
23.25.4.1 hwloc_bitmap_allbut() 152
23.25.4.2 hwloc_bitmap_alloc() o 152
23.25.4.3 hwloc_bitmap_alloc_full() 153
23.25.4.4 hwloc_bitmap_and() 153
23.25.4.5 hwloc_bitmap_andnot() 153
23.25.4.6 hwloc_bitmap_asprintf() 153
23.25.4.7 hwloc_bitmap_clr() 153
23.25.4.8 hwloc_bitmap_clr_range() o o 154
23.25.4.9 hwloc_bitmap_compare() 154
23.25.4.10 hwloc_bitmap_compare_first()o 154
23.25.4.11 hwloc_bitmap_copy() o 154
23.25.4.12 hwloc_bitmap_dup() 155
23.25.4.13 hwloc_bitmap_fill() 155
23.25.4.14 hwloc_bitmap_first() L 155
23.25.4.15 hwloc_bitmap_first_unset() Lo 155
23.25.4.16 hwloc_bitmap_free() L 155
23.25.4.17 hwloc_bitmap_from_ith_ulong()o 155
23.25.4.18 hwloc_bitmap_from_ulong() L 155
23.25.4.19 hwloc_bitmap_from_ulongs()o 156
23.25.4.20 hwloc_bitmap_intersects()o 156
23.25.4.21 hwloc_bitmap_isequal() 156
23.25.4.22 hwloc_bitmap_isfull() 156

Generated by Doxygen

xi

23.25.4.23 hwloc_bitmap_isincluded() o 156
23.25.4.24 hwloc_bitmap_isset() L 157
23.25.4.25 hwloc_bitmap_iszero() L 157
23.25.4.26 hwloc_bitmap_last() 157
23.25.4.27 hwloc_bitmap_last_unset()o 157
23.25.4.28 hwloc_bitmap_list_asprintf() oo 157
23.25.4.29 hwloc_bitmap_list_snprintf()o 158
23.25.4.30 hwloc_bitmap_list_sscanf() oo 158
23.25.4.31 hwloc_bitmap_next() 158
23.25.4.32 hwloc_bitmap_next_unset()o 158
23.25.4.33 hwloc_bitmap_not() 159
23.25.4.34 hwloc_bitmap_nr_ulongs() 159
23.25.4.35 hwloc_bitmap_only() 159
23.25.4.36 hwloc_bitmap_or() 159
23.25.4.37 hwloc_bitmap_set() 159
23.25.4.38 hwloc_bitmap_set_ith_ulong() L 159
23.25.4.39 hwloc_bitmap_set_range() oo 159
23.25.4.40 hwloc_bitmap_singlify() 160
23.25.4.41 hwloc_bitmap_snprintf() 160
23.25.4.42 hwloc_bitmap_sscanf() 160
23.25.4.43 hwloc_bitmap_taskset_asprintf() L. 161
23.25.4.44 hwloc_bitmap_taskset_snprintf()o 161
23.25.4.45 hwloc_bitmap_taskset_sscanf() 161
23.25.4.46 hwloc_bitmap_to_ith_ulong()o 161
23.25.4.47 hwloc_bitmap_to_ulong()o 162
23.25.4.48 hwloc_bitmap_to_ulongs() 162
23.25.4.49 hwloc_bitmap_weight() 162
23.25.4.50 hwloc_bitmap_xor() e 162
23.25.4.51 hwloc_bitmap_zero() 162

23.26 Exporting Topologiesto XML L 162
283.26.1 Detailed Description L 163
23.26.2 Enumeration Type Documentation L 163
23.26.2.1 hwloc_topology_export_xml_flags_.e 163
23.26.3 Function Documentation Lo 163
23.26.3.1 hwloc_export_obj_userdata() 163
23.26.3.2 hwloc_export_obj_userdata_base64() L. 163
23.26.3.3 hwloc_free_xmlbuffer() 164
23.26.3.4 hwloc_topology_export_ xml()o 164
23.26.3.5 hwloc_topology_export_xmlbuffer() 164
23.26.3.6 hwloc_topology_set_userdata_export_callback() 165
23.26.3.7 hwloc_topology_set_userdata_import_callback() 165

23.27 Exporting Topologies to Synthetic 166

Generated by Doxygen

xii

23.27.1 Detailed Description 166
23.27.2 Enumeration Type Documentationo 166
23.27.2.1 hwloc_topology_export_synthetic_flags_ e 166

23.27.3 Function Documentation 166
23.27.3.1 hwloc_topology_export_synthetic() 166

23.28 Retrieve distances between objectso 167
23.28.1 Detailed Description e e 167
23.28.2 Enumeration Type Documentationo 167
23.28.2.1 hwloc_distances_kind_e 167

23.28.2.2 hwloc_distances_transform_eo 168

23.28.3 Function Documentation Lo 169
23.28.3.1 hwloc_distances_get() 169

23.28.3.2 hwloc_distances_get by depth() 169

23.28.3.3 hwloc_distances_get_ by name() 169

23.28.3.4 hwloc_distances_get_by_type() o o 170

23.28.3.5 hwloc_distances_get name() 170

23.28.3.6 hwloc_distances_release()o 170

23.28.3.7 hwloc_distances_transform() L o 170

23.29 Helpers for consulting distance matriceso 171
23.29.1 Detailed Description L e 171
23.29.2 Function Documentation 171
23.29.2.1 hwloc_distances_obj_index() oo 171

23.29.2.2 hwloc_distances_obj_pair_values() 171

23.30 Add distances between objects L L 172
23.30.1 Detailed Description o e e 172
23.30.2 Typedef Documentation L 172
23.30.2.1 hwloc_distances_add_handle_t 172

23.30.3 Enumeration Type Documentationo 172
23.30.3.1 hwloc_distances_add_flag. e 172

23.30.4 Function Documentationo 173
23.30.4.1 hwloc_distances_add_commit() L. 173

23.30.4.2 hwloc_distances_add_create()o 173

23.30.4.3 hwloc_distances_add_values() 173

23.31 Remove distances between objectso Lo 174
23.31.1 Detailed Description e 174
23.31.2 Function Documentation 174
23.31.2.1 hwloc_distances_release_remove() 174

23.31.2.2 hwloc_distances_remove() 174

23.31.2.3 hwloc_distances_remove_by_depth() 174

23.31.2.4 hwloc_distances_remove_by_type() oo 175

23.32 Comparing memory node attributes for finding where to allocateon 175
23.32.1 Detailed Description o e e 176

Generated by Doxygen

23.32.2 Typedef Documentation 176
23.32.2.1 hwloc_memattr id t 176
23.32.83 Enumeration Type Documentationo 176
23.32.3.1 hwloc_local_numanode _flag_.e, 176
23.32.3.2 hwloc_location_type_e 177
23.32.3.3hwloc_ memattr id e e 177
23.32.4 Function Documentation 178
23.32.4.1 hwloc_get_local_numanode_objs() 178
23.32.4.2 hwloc_memattr_get_best_initiator() 179
23.32.4.3 hwloc_memattr_get_best target() 179
23.32.4.4 hwloc_memattr_get by name() 180
23.32.4.5 hwloc_memattr_get_initiators() Lo 180
23.32.4.6 hwloc_memattr_get targets() 181
23.32.4.7 hwloc_memattr_get value()o 181
23.32.4.8 hwloc_topology_get_default_nodeset() 182

23.33 Managing memory attributeso 183
23.33.1 Detailed Description L 183
23.33.2 Enumeration Type Documentation 183
23.33.2.1 hwloc_memattr flag e L 183
23.33.3 Function Documentation 183
23.33.3.1 hwloc_memattr_get flags() 183
23.33.3.2 hwloc_memattr_get name()o 184
23.33.8.3 hwloc_memattr_register() 184
23.33.3.4 hwloc_memattr_set value() L 184

23.34 Kinds of CPU cores e e 185
23.34.1 Detailed Description 185
23.34.2 Function Documentationo 185
23.34.2.1 hwloc_cpukinds_get by cpuset()o 185
23.34.2.2 hwloc_cpukinds_get_info() o 186
23.34.23 hwloc_cpukinds_get nr() 186
23.34.2.4 hwloc_cpukinds_register() 186

23.35 Linux-specifichelpers L 187
23.35.1 Detailed Description e e 187
23.35.2 Function Documentationo 187
23.35.2.1 hwloc_linux_get_tid cpubind() 187
23.35.2.2 hwloc_linux_get_tid_last_cpu_location() 188
23.35.2.3 hwloc_linux_read_path_as_cpumask() 188
23.35.2.4 hwloc_linux_set_tid_cpubind()o oo 188

283.36 Interoperability with Linux libnuma unsigned longmasks 188
23.36.1 Detailed Description o e e 189
23.36.2 Function Documentation 189
23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs() 189

Generated by Doxygen

Xiv

23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs() 189

23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs() 189

23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs() 190

23.37 Interoperability with Linux libnumabitmask oo oo 190
23.37.1 Detailed Description L e e 190
23.37.2 Function Documentation 190
23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask() 190

23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask() 191

23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask() 191

23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask() 191

23.38 Windows-specifichelpers 191
23.38.1 Detailed Description e 191
23.38.2 Function Documentation 192
23.38.2.1 hwloc_windows_get_nr_processor_groups() « v v v v v oo e 192

23.38.2.2 hwloc_windows_get_processor_group_cpuset() 192

283.39 Interoperability with glibc sched affinityo o 192
23.39.1 Detailed Description L 192
23.39.2 Function Documentation L e 192
23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity() 192

23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity() 193

23.40 Interoperability with OpenCL e 193
23.40.1 Detailed Description e e 193
23.40.2 Function Documentation 193
23.40.2.1 hwloc_opencl_get_device_cpuset() 193

23.40.2.2 hwloc_opencl_get_device_osdev()o oo 194

23.40.2.3 hwloc_opencl_get_device_osdev_by_index() 194

23.40.2.4 hwloc_opencl_get_device_pci_busid() 194

23.41 Interoperability with the CUDA Driver APl o 195
23.41.1 Detailed Description e 195
23.41.2 Function Documentationo 195
23.41.2.1 hwloc_cuda_get_device_cpuset() oo 195

23.41.2.2 hwloc_cuda_get_device_osdev()o 195

23.41.2.3 hwloc_cuda_get_device_osdev_by index() 196

23.41.2.4 hwloc_cuda_get_device_pci_ids() oo 196

23.41.2.5 hwloc_cuda_get_device_pcidev() 196

23.42 Interoperability with the CUDA Runtime APl 196
23.42.1 Detailed Description L e e e 197
23.42.2 Function Documentation 197
23.42.2.1 hwloc_cudart_get_device_cpuset() 197

23.42.2.2 hwloc_cudart_get_device_osdev_by index() 197

23.42.2.3 hwloc_cudart_get_device_pci_ids() oo 197

23.42.2.4 hwloc_cudart_get_device_pcidev() oo 198

Generated by Doxygen

XV

23.43 Interoperability with the NVIDIA Management Library 198
23.43.1 Detailed Description e e 198
23.43.2 Function Documentation 198

23.43.2.1 hwloc_nvml_get_device_cpuset() L. 198
23.43.2.2 hwloc_nvml_get_device_osdev() 198
23.43.2.3 hwloc_nvml_get_device_osdev_by_index() 199

23.44 Interoperability with the ROCm SMI Management Library 199
23.44.1 Detailed Description o 199
23.44.2 Function Documentation L Lo 199

23.44.2.1 hwloc_rsmi_get _device_cpuset() 199
23.44.2.2 hwloc_rsmi_get_device_osdev() oo 200
23.44.2.3 hwloc_rsmi_get_device_osdev_by_index() 200

23.45 Interoperability with the oneAPI Level Zero interface.o L. 200
283.45.1 Detailed Description L 201
23.45.2 Function Documentation 201

23.45.2.1 hwloc_levelzero_get_device_cpuset() 201
23.45.2.2 hwloc_levelzero_get_device_osdev() 201
23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset() 201
23.45.2.4 hwloc_levelzero_get sysman_device_osdev() 202

23.46 Interoperability with OpenGL displays o o o 202
23.46.1 Detailed Description e e 202
23.46.2 Function Documentationo 202

23.46.2.1 hwloc_gl_get_display_by osdev() L. 202
23.46.2.2 hwloc_gl_get_display_osdev_by name() 203
23.46.2.3 hwloc_gl_get_display_osdev_by_port_device() 203

23.47 Interoperability with OpenFabrics 203
23.47.1 Detailed Description e e 204
23.47.2 Function Documentationo 204

23.47.2.1 hwloc_ibv_get device_cpuset()o 204
23.47.2.2 hwloc_ibv_get device_osdev()o o 204
23.47.2.3 hwloc_ibv_get_device_osdev_by name() 204

23.48 Topology differences L 205
23.48.1 Detailed Description e e 205
23.48.2 Typedef Documentation 205

23.48.2.1 hwloc_topology_diff obj_attr type t 205
23.48.2.2 hwloc_topology_diff t 206
23.48.2.3 hwloc_topology_diff type t 206
23.48.3 Enumeration Type Documentationo Lo o oo 206
23.48.3.1 hwloc_topology_diff _apply_flags.e 206
23.48.3.2 hwloc_topology_diff obj_attr type_e 206
23.48.3.3 hwloc_topology _diff type e L 206
23.48.4 Function Documentation Lo 207

Generated by Doxygen

Xvi

23.48.4.1 hwloc_topology_diff_apply() 207
23.48.4.2 hwloc_topology_diff build() 207
23.48.4.3 hwloc_topology_diff destroy()o 207
23.48.4.4 hwloc_topology_diff_export_ xml() 208
23.48.4.5 hwloc_topology_diff_export_xmlbuffer() 208
23.48.4.6 hwloc_topology_diff load_xml() 208
23.48.4.7 hwloc_topology_diff load_xmlbuffer() 208

23.49 Sharing topologies between processeso e e 209
23.49.1 Detailed Description e 209
23.49.2 Function Documentation 209
23.49.2.1 hwloc_shmem_topology_adopt() 209
23.49.2.2 hwloc_shmem_topology get length() 210
23.49.2.3 hwloc_shmem_topology_write() 210

23.50 Components and Plugins: Discovery components and backends 211
23.50.1 Detailed Description e 211
23.50.2 Typedef Documentation L 211
23.50.2.1 hwloc_disc_phase_t 211
23.50.3 Enumeration Type Documentationo 211
23.50.3.1 hwloc_disc_phase_e e 211
23.50.3.2 hwloc_disc_status_flag. e oo 212
23.50.4 Function Documentation 212
23.50.4.1 hwloc_backend_alloc() oo 212
23.50.4.2 hwloc_backend _enable() 212

23.51 Components and Plugins: Genericcomponents 212
23.51.1 Detailed Description e e 212
23.51.2 Typedef Documentation 213
23.51.2.1 hwloc_component_type_t 213
23.51.83 Enumeration Type Documentationo 213
23.51.3.1 hwloc_component_type_e 213
23.51.4 Function Documentation 213
23.51.4.1 hwloc_plugin_check_namespace() 213

23.52 Components and Plugins: Core functions to be used by components 213
23.52.1 Detailed Description e e 214
23.52.2 Macro Definition Documentationo 214
23.52.2.1 HWLOC_SHOW_ALL_ERRORS 214
23.52.2.2 HWLOC_SHOW _CRITICAL_ERRORS 214
23.52.3 Function Documentation 214
23.52.3.1 hwloc__insert_object_ by cpuset() 214
23.52.3.2 hwloc_alloc_setup_object() oo 214
23.52.83.3 hwloc_hide_errors() o 215
23.52.3.4 hwloc_insert_object_by_parent() 215
23.52.3.5 hwloc_obj_add_children_sets() 215

Generated by Doxygen

23.52.3.6 hwloc_topology_reconnect()o 215

23.53 Components and Plugins: Filteringobjects oL 215
23.53.1 Detailed Description e 216
23.53.2 Function Documentation 216
23.53.2.1 hwloc_filter_check_keep_object() L. 216

23.53.2.2 hwloc_filter_check_keep_object_type() 216

23.53.2.3 hwloc_filter_check_osdev_subtype_important() 216

23.53.2.4 hwloc_filter_check_pcidev_subtype_important() 216

23.54 Components and Plugins: helpers for PCldiscovery 216
23.54.1 Detailed Description e 217
23.54.2 Function Documentation Lo 217
23.54.2.1 hwloc_pcidisc_check_bridge_type()o 217

23.54.2.2 hwloc_pcidisc_find_bridge_buses() oL 217

23.54.2.3 hwloc_pcidisc_find_cap() o o 217

23.54.2.4 hwloc_pcidisc_find_linkspeed() 217

23.54.2.5 hwloc_pcidisc_tree_attach() L. 217

23.54.2.6 hwloc_pcidisc_tree_insert_by_busid() 217

23.55 Components and Plugins: finding PCI objects during other discoveries 218
23.55.1 Detailed Description e e 218
23.55.2 Function Documentation 218
23.55.2.1 hwloc_pci_find_by_busid() 218

23.55.2.2 hwloc_pci_find_parent_by busid() 218

23.56 Components and Plugins: distanceso 218
23.56.1 Detailed Description e e 219
23.56.2 Typedef Documentation 219
23.56.2.1 hwloc_backend distances_add handle t 219

23.56.3 Function Documentation 219
23.56.3.1 hwloc_backend_distances_add_commit() 219

23.56.3.2 hwloc_backend_distances_add_create() 219

23.56.3.3 hwloc_backend_distances_add_values() 219

24 Data Structure Documentation 221
24.1 hwloc_backend Struct Reference e 221
24.1.1 Detailed Description L 221
24.1.2 Field Documentation 221
24121 disable e e 221
24.1.22dISCOVEr L e 221
241.23flags 221

24124 get_pci_busid cpuset 222
241.25i0s_thissystem 222
24.1.2.6Pphases e 222
24127private_data L 222

Generated by Doxygen

Xviii

24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 222
24.2.1 Detailed Description L 222
2422 Field Documentation L 222

2422 1depth. . . . L e 222
24.222domain L 223
24223 [UNION] . . . L 223
24224 downstream_type L 223
24225PCi [1/2] « v v v i e e e e e 223
24226 [struct] [2/21 . . . e 223
24.22.7secondary_bus 223
24228 subordinate_ bus 223
24229[UNON] . . . L 223
242210 upstream_type L 223

24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 223
24.3.1 Detailed Description e e e 223
24.3.2 Field Documentation L 224

24.3.2.1 associativity Lo 224
243.22depth. 224
24.3.231inesize L 224
243248128 224
24.3251tYp6 . . . e 224

24.4 hwloc_cl_device_pci_bus_info_khr Struct Reference 224

24.41 Field Documentation L 224
24414 pci_bus 224
24.41.2pci_device 224
24413 pci_domain L e 224
24414 pci_function L L 224

24.5 hwloc_cl_device_topology_amd Union Reference 225

24.5.1 Field Documentation L e 225
2451.10US . . . L e 225
24.51.2data e e e 225
2451.3device 225
24514 function . . . L L L 225
2A5A5[SIUCH © © o o o o o e e 225
24516 [struct] 225
A5 7HWPE © o e 225
24.51.8UnUsed 225

24.6 hwloc_component Struct Reference 225
24.6.1 Detailed Description L 226
24.6.2 Field Documentation L e 226

24621 ab0 . .. e 226
24.6.22data e 226

Generated by Doxygen

Xix

24.6.23finalize 226
24.6.241Mlags e 226

24.6.2510Nit 226
24B8.261tYPC e 227

24.7 hwloc_disc_component Struct Reference 227
24.7.1 Detailed Description Lo 227
24.7.2 Field Documentation 227
24721 enabled_by default 227
24.7.22excluded phases 227

24723 instantiate L L 227
247.24NAME L e e e e 227
24.7.25phases e 227

24726 priority L 228

24.8 hwloc_disc_status Struct Reference L 228
24.8.1 Detailed Description e e e 228
24.8.2 Field Documentation L 228
24821 excluded_phases 228
24.822flags 228
24.8.2.3phase 228

24.9 hwloc_distances_s Struct Reference 228
24.9.1 Detailed Description L 229
24.9.2 Field Documentation 229
24.9.21KINd . .. e 229
24.9.22nboObjS e 229
24.9.230bjs e e 229
24.9.24values 229

24.10 hwloc_obj_attr_u::hwloc_group_attr s Struct Reference 229
24.10.1 Detailed Description L 229
24.10.2 Field Documentation L 230
2410210 depth 230
24.10.2.2dont_merge e e 230
2410.23Kind L e 230

241024 subkind L L L e 230

24.11 hwloc_info_s Struct Reference e 230
24.11.1 Detailed Description e 230
24.11.2 Field Documentation e 230
2411.210amMe e 230
2411.22value L 230

24.12 hwloc_location Struct Reference Lo 230
24.12.1 Detailed Description e e 231
24.12.2 Field Documentation e 231
241221 location 231

Generated by Doxygen

XX

2412221YP€ . . . L e 231

24 .13 hwloc_location::hwloc_location_u Union Reference 231
24.13.1 Detailed Description e e 231
24.13.2 Field Documentation 231
24.13.2.1cpuset . . .o e e 231
24.13.220bjeCt e 231

24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference 231
24.14.1 Detailed Description L e e 232
24.14.2 Field Documentation L 232
24142 0 count L L 232
2414.2.2SiZ€ o e e e 232

24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference 232
24.15.1 Detailed Description e e 232
24.15.2 Field Documentation L 232
241521 local_memory 232
24.15.22page_types e 232
241523 page_types_len 233

2416 hwloc_obj Struct Reference L 233
24.16.1 Detailed Description e e 234
24.16.2 Field Documentation L 234
241620 arity L e 234
24.16.2.2attr L e e e 234
2416.23children 234
24.16.2.4 complete_cpuset 234
24.16.2.5 complete_nodeset 234
24.16.2.6 cpuset e e 234
2416.2.7depth 235
24.16.28first_child 235
24.16.29gp_indeX 235
24.16.2100nfos L e 235
24.16.2.111infos_count L e e e 235
24.16.2.12100_arity 235
24.16.2.131o_first_child. L 235
24.16.214 last_child 235
24.16.2.15logical_index 235
2416.216 memory_arity L e 236
24.16.2.17 memory_first_child 236
2416.218 misc_arity L 236
24.16.2.19 misc_first_child L 236
24.16.220name e 236
24.16.2.21 next_cousin L L L e e e e 236
24.16.2.22next_sibling L 236

Generated by Doxygen

xxi

24.16.2.23n0deset L. L 236
24.16.2.24 05_iNAEX L e e e 237
24.16.2.25 parent e e e e 237
2416.2.26 Prev_COUSIN o o v i e e e e e 237
24.16.2.27 prev_sibling L 237
24.16.2.28 sibling_rank L L 237
24.16.2.29 subtype L L 237
24.16.2.30 symmetric_subtree L 237
2416.231total_memory 237
2416.2321YPE e 237
24.16.2.33userdata L 237

2417 hwloc_obj_attr uUnion Reference 238
24.17.1 Detailed Description e e 238
24.17.2 Field Documentation L 238
241721 bridge 238
2417.22cache L 238
241723 Qr0UP . . . L L e 238
241724 numanode Lo e e 238
2417.2508deV L 238
2417.26pCIEV . . . 238

24.18 hwloc_obj_attr_u::hwloc_osdev_attr s Struct Reference 238
24.18.1 Detailed Description e 239
24.18.2 Field Documentation L 239
2418.2.1type e 239

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 239
24.19.1 Detailed Description L e e 239
24.19.2 Field Documentation 239
2419.21bUS e e 239
24.19.22class_id. 239
241923 dEV e 239
241924 device_id L e e 239
24.19.25domain L 240
2419.261funC L e 240
2419.2.7linkspeed L 240
24.19.2.871eVISION L L e 240
24.19.29 subdevice_id 240
24.19.2.10subvendor id e e e e e e e 240
2419211 vendor_id 240

24.20 hwloc_topology_cpubind_support Struct Reference oL 240
24.20.1 Detailed Description o e e e 241
24.20.2 Field Documentation 241
24.20.2.1 get_proc_cpubind L 241

Generated by Doxygen

xxii

24.20.2.2 get_proc_last_cpu_location 241

24.20.2.3 get_thisproc_cpubindo 241

24.20.2.4 get_thisproc_last_cpu_location oo 241

24.20.2.5 get_thisthread_cpubind 241

24.20.2.6 get_thisthread_last_cpu_location L. 241

24.20.2.7 get_thread_cpubind 241

24.20.2.8 set_proc_cpubind L 241

24.20.2.9 set_thisproc_cpubind L 241

24.20.2.10 set_thisthread_cpubindo 241

24.20.2.11 set_thread_cpubind L 242

24.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 242
24.21.1 Field Documentation L 242
242140 next . . L L L e 242

2421 1.21YPC . « o o i e e 242

24.22 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference 242
24.22.1 Field Documentation e 242
2422 11YPE .« o o i e 242

24.23 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference 242
24.23.1 Field Documentation e 243
242311 diff . . 243
24.23.1.2next e 243
242313001 depth. 243
24.231.40bj_index 243

242315 Ype e 243

24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference 243
24.24 1 Detailed Description L e e 243
24.24.2 Field Documentation e 243
242421 NaMe e e e e 243
242422newvalue e 243

242423 o0ldvalue L 244
2424241YPC 244

24.25 hwloc_topology_diff_obj_attr_u Union Reference 244
24.25.1 Detailed Description e e 244
24.25.2 Field Documentation e e 244
242521 QENEIC . . . v e 244
24252.2sting L 244

242523 UINtB4 244

24.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff _obj_attr_uint64_s Struct Reference 244
24.26.1 Detailed Description e e 245
24.26.2 Field Documentation L 245
24.26.2110ndeX e 245
24.26.2.2newvalue L 245

Generated by Doxygen

24.26.2.30ldvalue L 245

2426 241YPC . . . i i e e e e 245

24.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 245
24.27.1 Field Documentation e 245
242710 next . . L e e e e e e 245
24271.20bj_depth 245
2427130bj_index e 245

2427 A4YPC . o o i e 246

24.28 hwloc_topology_diff_u Union Reference 246
24.28.1 Detailed Description e e 246
24.28.2 Field Documentation e 246
242821 gENEIC . . .« o o e e 246
24.28.220bj attr 246
24.28.2.3t00_complex e 246

24.29 hwloc_topology_discovery_support Struct Reference 246
24.29.1 Detailed Description e e 247
24.29.2 Field Documentation e 247
24.29.2.1 cpukind_efficiency L 247
24292 2disallowed_numa L e 247
24.29.23disallowed_pu L 247
242924 NUMA L L e e 247
24.29.2.5NUMa_MEeMOrY o e e e e e e e e e e e 247
242926 PU. « . ot e 247

24.30 hwloc_topology_membind_support Struct Reference 247
24.30.1 Detailed Description o e e 248
24.30.2 Field Documentation L 248
24.30.2.1 alloc_membind 248
24.30.2.2bind_membind L 248
24.30.2.3 firsttouch_membind 248
24.30.2.4 get_area_membind L 248
24.30.2.5get_area_memlocation L 248
24.30.2.6 get_ proc_membind 248
24.30.2.7 get_thisproc_membind 248
24.30.2.8 get_thisthread_membind Lo 248
24.30.29 interleave_membind L 248
24.30.2.10 migrate_membind L 248
24.30.2.11 nexttouch_membind o 249
24.30.2.12set_area_membind L 249
24.30.2.13set_proc_membind 249
24.30.2.14 set_thisproc_membind 249
24.30.2.15 set_thisthread_membindo 249
24.30.2.16 weighted_interleave_membind oL 249

Generated by Doxygen

xxiv

24.31 hwloc_topology_misc_support Struct Reference L. 249
24.31.1 Detailed Description e e 249
24.31.2 Field Documentation L 249

24.31.21 imported_support 249

24.32 hwloc_topology_support Struct Reference o 249
24.32.1 Detailed Description L e e 250
24.32.2 Field Documentation e 250

243221 cpubind e e 250
243222 dISCOVEIY . . . v o i e e 250
243223 membind 250
243224 MISC e e e e e e 250

Generated by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of hierarchical architectures for high-performance
computing

1.1 Table of Contents

* Introduction

— hwloc Overview

Command-line Examples

Programming Interface

Questions and Bugs
History / Credits

» Chapters

— Installation

— Compiling software on top of hwloc's C API

— Terms and Definitions

— Command-Line Tools

— Environment Variables

— CPU and Memory Binding Overview

— 1/O Devices

— Miscellaneous objects

— Object attributes

— Topology Attributes: Distances, Memory Attributes and CPU Kinds
— Heterogeneous Memory

— Importing and exporting topologies from/to XML files
— Synthetic topologies

— Interoperability With Other Software

— Thread Safety

— Components and plugins

— Embedding hwloc in Other Software

— Frequently Asked Questions (FAQ)

— Upgrading to the hwloc 2.0 API

Generated by Doxygen

2 Hardware Locality

1.2 hwloc Overview

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware resources
in parallel architectures. It offers command-line tools and a C API for consulting these resources, their locality,
attributes, and interconnection. hwloc primarily aims at helping high-performance computing (HPC) applications,
but is also applicable to any project seeking to exploit code and/or data locality on modern computing platforms.
hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements within
a node, such as: NUMA memory nodes, shared caches, processor packages, dies and cores, processing units
(logical processors or "threads") and even I/O devices. hwloc also gathers various attributes such as cache and
memory information, and is portable across a variety of different operating systems and platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project
seeking to exploit code and/or data locality on modern computing platforms.

hwloc supports the following operating systems:

« Linux (with knowledge of cgroups and cpusets, memory targets/initiators, etc.) on all supported hardware,
including Intel Xeon Phi, ScaleMP vSMP, and NumaScale NumaConnect.

« Solaris (with support for processor sets and logical domains)
« AIX

« Darwin/ OS X

» FreeBSD and its variants (such as kFreeBSD/GNU)

+ NetBSD

« HP-UX

* Microsoft Windows

+ IBM BlueGene/Q Compute Node Kernel (CNK)

Since it uses standard Operating System information, hwloc's support is mostly independant from the processor
type (x86, powerpc, ...) and just relies on the Operating System support. The main exception is BSD operating
systems (NetBSD, FreeBSD, etc.) because they do not provide support topology information, hence hwloc uses an
x86-only CPUID-based backend (which can be used for other OSes too, see the Components and plugins section).

To check whether hwloc works on a particular machine, just try to build itand run 1stopo or 1stopo-no—-graphics.
If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no topology information is avail-
able.

For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

+ Symmetrical tree of resources generated from a list of level arities, see Synthetic topologies.

» Remote machine simulation through the gathering of topology as XML files, see Importing and exporting topologies from/to XML

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one of
several different formats, including: plain text, LaTeX tikzpicture, PDF, PNG, and FIG (see Command-line Examples
below). Note that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap
API that is used to describe topology objects location on physical/logical processors. See the Programming Interface
below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs
are also provided to ease command-line manipulation of topology objects, binding of processes, and so on.
Bindings for several other languages are available fromthe project website.

1.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the 1 st opo tool may show the following graphical output:

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/#language_bindings

1.3 Command-line Examples

Machine

|NUMAMMEL#DP#E

Package L#0

Package L#1

Package L#2

Package L#3

| L3 (4096KEB) |

| L3 (4096KE) |

| L3 (4096KEB) |

| L3 (4096KEB) |

| L2 (1024KE) || L2 (1024KB) |

| L2 (1024KE) || L2 (1024KE) |

| L2 (1024KB) || L2 (1024KE) |

| L2 (1024KB) || L2 (1024KE) |

|L1[16KB:| | |L1[16KBJ | |L1[16KBJ | |L1[16KB] | |Ll[16KBJ | |L1[16KB] | |L1[16KBJ | |L1[16KB:| |
Core L#0 Core L¥#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L¥6 Core L#7
PUL#O PU L#2 PUL#4 PU L#& PUL#8 PU L#10 PUL#12 PU L#14
P#0 P#4 P#1 P#5 P#2 P#HE P#3 P#7
PUL#1 PUL#3 PUL#S PUL#T PUL#9 PU L#11 PUL#13 PU L#15
P#8 P#12 P#9 P#13 P#10 P#14 P#11 P#15
Here's the equivalent output in textual form:
Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)
L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#l1
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4
PU L#8 (P#2)
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
PU L#10 (P#6)
PU L#11 (P#14)
Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6
PU L#12 (P#3)
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (16KB) + Core L#7
PU L#14 (P#7)
PU L#15 (P#15)

Note that there is also an equivalent output in XML that is meant for exporting/importing topologies but it is hardly
readable to human-beings (see Importing and exporting topologies from/to XML files for details).
On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by the administrator), the 1 st opo
tool may show the following graphical output (with ——disallowed for displaying disallowed objects):

Machine (32GE total)

Package L#0

Package L#1

Package L#2

Package L#3

| NUMANDdEL#DP#ﬂEBlﬂDMBJl

| NUMAMNode L#1 P#1 (8192MEB) |

| NUMANode L#2 P#2 (8192MEB) |

| NUMANode L#3 P#3 (B192MEB) |

| L2 (1024KB) || L2 {1024KE) |

| L2 (1024KB) || L2 {1024KE) |

| L2 (1024KB) || L2 {1024KE) |

| L2 {1024KE) || L2 {1024KE) |

| L1 (64KE) | | L1 (B4KE) | | L1 (64KE) | | L1 (B4KE) | | L1 (64KE) | | L1 (B4KE) | | L1 (B4KE) | | L1 (B4KE) |
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7
PU LED PU L#1 PU L#2 PU L#3 PU L#6 PU L#7
P#0 p#1 P#2 p#3 P#6 p#7

Generated by Doxygen

4 Hardware Locality

Here's the equivalent output in textual form:

Machine (32GB total)
Package L#0
NUMANode L#0 (P#0 8190MB)
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)
Package L#l
NUMANode L#1 (P#1 8192MB)
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3
Package L#2
NUMANode L#2 (P#2 8192MB)
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4)
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)
Package L#3
NUMANode L#3 (P#3 8192MB)
L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)

On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each package):

Machine (16GE total)

NUMAMode L#0 P#0 (16GE)
Package L#0 Package L#1
L2 (4096KE) L2 (4096KE) L2 (4096KE) L2 (4096KE)
L1{32KEB) L1 {32KE) L1 {32KEB) L1 {32KB) L1{32KB) L1 (32KE) L1{32KEB) L1 (32KE)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#ES Core L#6& Core LET
PLL#D PU L#1 PLL#2 PU L#3 PL L#4 PU L#S PU L#E PU L#7
P#D P4 p#2 P#E P#L P#5 P#3 P#7
Here's the same output in textual form:
Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0
L2 L#0 (4096KB)
L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1l L#1 (32KB) + Core L#l + PU L#1 (P#4)
L2 L#1 (4096KB)
L1l L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L1l L#3 (32KB) + Core L#3 + PU L#3 (P#6)
Package L#1
L2 L#2 (4096KB)
L1l L#4 (32KB) + Core L#4 + PU L#4 (P#1)
L1l L#5 (32KB) + Core L#5 + PU L#5 (P#5)
L2 L#3 (4096KB)
L1l L#6 (32KB) + Core L#6 + PU L#6 (P#3)
L1 L#7 (32KB) + Core L#7 + PU L#7 (P#7)

1.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to reduce the
need to manually manipulate objects and follow links between them. Documentation for all these is provided later in
this document. Developers may also want to look at hwloc/inlines.h which contains the actual inline code of some
hwloc.h routines, and at this document, which provides good higher-level topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably
be read first.

Generated by Doxygen

1.4 Programming Interface 5

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps
may be used for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in
hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments.
See the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files
(formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and pdflatex installed
— the documentation will be built during the normal "make" process. The documentation is installed during "make
install" to $prefix/share/doc/hwloc/ and your systems default man page tree (under $prefix, of course).

1.4.1 Portability

Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems provide
interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited number of
kinds of CPU and memory binding, and some do not provide any binding interface at all. Hwloc's binding functions
would then simply return the ENOSYS error (Function not implemented), meaning that the underlying Operating
System does not provide any interface for them. CPU binding and Memory binding provide more information on
which hwloc binding functions should be preferred because interfaces for them are usually available on the sup-
ported Operating Systems.

Similarly, the ability of reporting topology information varies from one platform to another. As shown in
Command-line Examples, hwloc can obtain information on a wide variety of hardware topologies. However,
some platforms and/or operating system versions will only report a subset of this information. For example, on
an PPC64-based system with 8 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from
RHEL 5.4, hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information
about caches, packages, or cores is available.

Here's the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

Machine (61GE total)

Groupl Groupl
| NUMANode L#0 (30GE) | | NUMANode L#1 (31GE) |
| PU L#0D | PUL#1 | PUL#2 | PUL#3 | PU L#4 | PU L#5 | PU L#6 | PU L#7 | | PU L#8 | PU L#9 | PU L#10 | PU L#11 | PU L#12 | PU L#13 | PU L#14 | PU L#15 |

And here's the graphical output from Istopo on this platform when SMT is disabled:

Machine (61GE total)

Groupld Groupl
| NUMANode L#0 (30GE) | | NUMAMode L#1 (31GE) |
| PU L#D | PUL#1 | PUL#2 | PUL#3 | | PU L#4 | PUL#S | PU L#E | PUL#ET |

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example, seems to change location
from NUMA node #0 to #1. In reality, no PUs "moved" — they were simply re-numbered when hwloc only saw
half as many (see also Logical index in Indexes and Sets). Hence, PU L#6 in the SMT-disabled picture probably
corresponds to PU L#12 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms — even platforms / OSs that provide much
more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report
information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to
discover all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Machine (61GB total)

Group0 Group0

| NUMANode L#0 (30GEB) | NUMANode L#1 (31GB) |

Package L#0 Package L#1 Package L#2 Package L#3
| L3 (32MB) |

| L3 (32MB) | L3 (32MB) | | L3 (32MB)

| L2 (4026KE) | L2 (4096KB) | | L2 (4096KB) | L2 (4096KE) |

| L1 iB4KE) | | L1 (B4KE) | L1iB4KE) | | L1 (64KE) | | L1iB4KE) | | L1 (64KE) | L1 [B4KE) | | L1 {B4KE) |

Core L¥0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L¥7

| PU L#0 | PU L#1 | | PU L#2 | PUL#3 | | PU L#4 | PU L#5 | | PU L#6 | PU L#7 | | PU L#8 | PU L#9 | | PUL#10 | PUL#11 | | PU L#12 | PUL#13| | PUL#14 | PU L#]Sl

Generated by Doxygen

6 Hardware Locality

Developers using the hwloc APl or XML output for portable applications should therefore be extremely careful to
not make any assumptions about the structure of data that is returned. For example, per the above reported PPC
topology, it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of hwloc. Long-
lived applications that are meant to span multiple different hardware platforms should also be careful about making
structure assumptions. For example, a new element may someday exist between a core and a PU.

1.4.2 API Example

The following small C example (available in the source tree as ““doc/examples/hwloc-hello.c") prints the topology of
the machine and performs some thread and memory binding. More examples are available in the doc/examples/

directory of the source tree.
/+ Example hwloc API program.
*

* See other examples under doc/examples/ in the source tree

« for more details.

*

« Copyright ©® 2009-2016 Inria. All rights reserved.

« Copyright © 2009-2011 Université Bordeaux

* Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
* See COPYING in top-level directory.

*

* hwloc-hello.c

*/

#include "hwloc.h"

#include <errno.h>
#include <stdio.h>
#include <string.h>

static void print_children (hwloc_topology_t topology, hwloc_obj_t obj,
int depth)
{
char typel[32], attr[1024];
unsigned 1i;

hwloc_obj_type_snprintf (type, sizeof (type), obj, 0);
printf ("$xs%s", 2+depth, "", type);
if (obj->os_index != (unsigned) -1)
printf ("#%u", obj->os_index);
hwloc_obj_attr_snprintf (attr, sizeof (attr), obj, " ", 0);
(xattr)
printf (" (%s)", attr);
printf("\n");
for (1 = 0; 1 < obj->arity; i++) {
print_children (topology, obj->children[i], depth + 1);

int main (void)

int depth;

unsigned i, n;

unsigned long size;

int levels;

char string[128];

int topodepth;

void =*m;

hwloc_topology_t topology;
hwloc_cpuset_t cpuset;
hwloc_obj_t obj;

/* Allocate and initialize topology object. =/
hwloc_topology_init (&topology) ;

* ... Optionally, put detection configuration here to ignore
/ Opti 11 d i fi i h to i
some objects types, define a synthetic topology, etc....

The default is to detect all the objects of the machine that
the caller is allowed to access. See Configure Topology
Detection. */

/» Perform the topology detection. =/
hwloc_topology_load (topology) ;

/+ Optionally, get some additional topology information
in case we need the topology depth later. =/
topodepth = hwloc_topology_get_depth (topology) ;

[/ e e oK o K ok Kk Kk K Kk Kk K Kk Kk K K K K K Kk ko ok ok ok ok ok ok ok o o ok o ok ok ok Kk ko kR kR R R K Kk K

* First example:

Generated by Doxygen

1.4 Programming Interface

* Walk the topology with an array style, from level 0 (always
* the system level) to the lowest level (always the proc level).
***/
for (depth = 0; depth < topodepth; depth++) {
printf ("«x+ Objects at level %d\n", depth);
for (1 = 0; 1 < hwloc_get_nbobjs_by_depth (topology, depth);
i++) {
hwloc_obj_type_snprintf (string, sizeof (string),
hwloc_get_obj_by_depth(topology, depth, i), 0);
printf ("Index %u: %s\n", i, string);

}

/***
* Second example:
« Walk the topology with a tree style.
***/

printf ("sx+ Printing overall tree\n");

print_children(topology, hwloc_get_root_obj(topology), 0);

/***
« Third example:
« Print the number of packages.
k***********k**/
depth = hwloc_get_type_depth (topology, HWLOC_OBJ_PACKAGE) ;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
printf ("+x* The number of packages is unknown\n");
} else {
printf ("x+x %u package(s)\n",
hwloc_get_nbobjs_by_depth (topology, depth));
}

/***
* Fourth example:
« Compute the amount of cache that the first logical processor
* has above it.
***/
levels = 0;
size = 0;
for (obj
obj;
obj = obj->parent)
1f (hwloc_obj_type_is_cache (obj->type)) {
levels++;
size += obj->attr->cache.size;

hwloc_get_obj_by_type (topology, HWLOC_OBJ_PU, 0);

}
printf ("sx+ Logical processor 0 has %d caches totaling %1uKB\n",
levels, size / 1024);

/***
« Fifth example:
* Bind to only one thread of the last core of the machine.
*
* First find out where cores are, or else smaller sets of CPUs if
* the OS doesn’t have the notion of a "core".
***/

depth = hwloc_get_type_or_below_depth (topology, HWLOC_OBJ_CORE) ;

/* Get last core. */
obj = hwloc_get_obj_by_depth (topology, depth,
hwloc_get_nbobjs_by_depth (topology, depth) - 1);
Lf (obJ) |
/* Get a copy of its cpuset that we may modify. =/
cpuset = hwloc_bitmap_dup (obj->cpuset);

/* Get only one logical processor (in case the core is
SMT/hyper—threaded) . */
hwloc_bitmap_singlify (cpuset);

/* And try to bind ourself there. =/
1f (hwloc_set_cpubind(topology, cpuset, 0)) {
char xstr;
int error = errno;
hwloc_bitmap_asprintf (&str, obj->cpuset);
printf ("Couldn’t bind to cpuset %s: %s\n", str, strerror (error));
free(str);

}

/* Free our cpuset copy =/
hwloc_bitmap_free (cpuset) ;

}

/***
* Sixth example:
« Allocate some memory on the last NUMA node, bind some existing
* memory to the last NUMA node.

Kk h ok kkh ok kkk ok kkkkkkhhkkk ok ok kkkkkkkkkkkkkkk ok kkkkkkkkkkkkkkkkkkkkkxkhk/

Generated by Doxygen

8 Hardware Locality

/* Get last node. There’s always at least one. */
n = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_NUMANODE) ;
obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, n - 1);

size = 1024x1024;

m = hwloc_alloc_membind(topology, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

hwloc_free (topology, m, size);

m = malloc(size);

hwloc_set_area_membind (topology, m, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

free(m);

/* Destroy topology object. x/
hwloc_topology_destroy (topology) ;

return 0;
}
hwloc provides a pkg—config executable to obtain relevant compiler and linker flags. See Compiling software on top of hwloc's C Al
for details on building program on top of hwloc's API using GNU Make or CMake.
On a machine 2 processor packages — each package of which has two processing cores — the output from running
hwloc—hello could be something like the following:

shell$./hwloc-hello
*x%x Objects at level 0
Index 0: Machine
*x%x Objects at level 1
Index 0: Package#0
Index 1: Package#l
*xx Objects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
x*x Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
%% Printing overall tree
Machine
Package#0
Core#0
PU#0
Core#l
PU#1
Package#l
Core#3
PU#2
Core#2
PU#3
*x% 2 package (s)
**x Logical processor 0 has 0 caches totaling OKB
shells$

1.5 AQuestions and Bugs

Bugs should be reported in the tracker (https://github.com/open-mpi/hwloc/1issues). Opening a

new issue automatically displays lots of hints about how to debug and report issues.

Questions may be sent to the users or developers mailing lists (https://www.open-mpi.org/community/lists/hwloc
php).

There is also a #hwloc IRC channel on Libera Chat (1rc.libera.chat).

1.6 History / Credits

hwloc is the evolution and merger of the libtopology project and the Portable Linux Processor Affinity (PLPA) (
https://www.open-mpi.org/projects/plpa/) project. Because of functional and ideological overlap,
these two code bases and ideas were merged and released under the name "hwloc" as an Open MPI sub-project.

Generated by Doxygen

https://github.com/open-mpi/hwloc/issues
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/projects/plpa/
https://www.open-mpi.org/projects/plpa/

1.6 History / Credits 9

libtopology was initially developed by the Inria Runtime Team-Project. PLPA was initially developed by the Open
MPI development team as a sub-project. Both are now deprecated in favor of hwloc, which is distributed as an Open
MPI sub-project.

Generated by Doxygen

10

Hardware Locality

Generated by Doxygen

Chapter 2

Installation

hwloc (https://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is
hosted as a sub-project of the overall Open MPI project (https://www.open-mpi.org/). Note that hwloc
does not require any functionality from Open MPI — it is a wholly separate (and much smaller!) project and code
base. It just happens to be hosted as part of the overall Open MPI project.

2.1 Basic Installation

Installation is the fairly common GNU-based process:

shell$./configure --prefix=...
shell$ make
shell$ make install

The hwloc command-line tool "Istopo" produces human-readable topology maps, as mentioned above. Running the
"Istopo" tool is a good way to check as a graphical output whether hwloc properly detected the architecture of your
node.

2.2 Optional Dependencies

Istopo may also export graphics to the SVG and "fig" file formats. Support for PDF, Postscript, and PNG exporting
is provided if the "Cairo" development package (usually cairo—-devel or libcairo2-dev) can be found in
"Istopo" when hwloc is configured and build.

The hwloc core may also benefit from the following development packages:

« libpciaccess for full /O device discovery (Libpciaccess-devel or libpciaccess—dev package).
On Linux, PCI discovery may still be performed (without vendor/device names) even if libpciaccess cannot be
used.

« AMD or NVIDIA OpenCL implementations for OpenCL device discovery.
+ the NVIDIA CUDA Toolkit for CUDA device discovery. See How do | enable CUDA and select which CUDA version to use?.

» the NVIDIA Management Library (NVML) for NVML device discovery. It is included in CUDA since ver-
sion 8.0. Older NVML releases were available within the NVIDIA GPU Deployment Kit from https«
://developer.nvidia.com/gpu-deployment-kit .

+ the NV-CONTROL X extension library (NVCtrl) for NVIDIA display discovery. The relevant development pack-

ageis usually 11bXNVCtrl-devel or libxnvctrl-dev. ltis also available within nvidia-settings from

ftp://download.nvidia.com/XFree86/nvidia-settings/and https://github.«
com/NVIDIA/nvidia-settings/ .

» the AMD ROCm SMI library for RSMI device discovery. The relevant development package is usually
rocm-smi-lib64 orlibrocm-smi-dev. See How do | enable ROCm SMI and select which version to use?.

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/
https://developer.nvidia.com/gpu-deployment-kit
https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

12 Installation

+ the oneAPI Level Zero library. The relevant development package is usually level-zero-dev or
level-zero-devel. The implementation must be recent enough to support zesDriverGet«
DeviceByUuidExp ()

* libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import
XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to XML files
for details. The relevant development package is usually 1ibxml2-devel or 1ibxml2-dev.

* libudev on Linux for easier discovery of OS device information (otherwise hwloc will try to manually parse
udev raw files). The relevant development package is usually 1ibudev—-devel or 1ibudev-dev.

« libtool's Itdl library for dynamic plugin loading if the native dlopen cannot be used. The relevant development
package is usually 1ibtool-1tdl-devel or 1ibltdl-dev.

PCIl and XML support may be statically built inside the main hwloc library, or as separate dynamically-loaded plugins
(see the Components and plugins section).

Also note that if you install supplemental libraries in non-standard locations, hwloc's configure script may not be able
to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS, or PKG_CONFIG_PATH
values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc's configure script may not find it by default. Try
adding PKG_CONFIG_PATH to the ./configure command line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will not be used (remember that
hwloc is BSD-licensed).

2.3 Installing from a Git clone

Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required when building from a Git
clone.

Nightly development snapshots are available on the web site, they can be configured and built without any need for
Git or GNU Autotools.

Generated by Doxygen

Chapter 3

Compiling software on top of hwloc's C
API

A program using the hwloc C API (for instance with hwloc-hello.c presented in APl Example) may be built
with standard development tools. pkg—config provides easy ways to retrieve the required compiler and linker
flags as described below, but it is not mandatory.

3.1 Compiling on top of hwloc's C APl with GNU Make

Here's an example of Makefile for building hwloc—-hello. c with GNU Make:

CFLAGS += $(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

3.2 Compiling on top of hwloc's C APl with CMake

Here's an example de CMakeLists.txt which shows variables obtained from pkg—config and how to use
them:

cmake_minimum_required (VERSION 3.6)
project (TEST_HWLOC C)

include (FindPkgConfig)
i1if (PKG_CONFIG_FOUND)
pkg_search_module (HNLOC REQUIRED IMPORTED_TARGET hwloc)
else (PKG_CONFIG_FOUND)
message (FATAL_ERROR "FindHWLOC needs pkg-config program and PKG_CONFIG_PATH must contain the path to hwloc.r
endif (PKG_CONFIG_FOUND)

add_executable (hwloc-hello hwloc-hello.c)
target_link_libraries (hwloc-hello PRIVATE PkgConfig::HWLOC)

The project may be built with:

cmake -B build
cmake —--build build --verbose

The built binary is then available under build/hwloc-hello.

Generated by Doxygen

14

Compiling software on top of hwloc's C API

Generated by Doxygen

Chapter 4

Terms and Definitions

4.1 Obijects

Object Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA memory node, etc. The
different types detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see Hierarchy, Tree and Levels).

Object Kind There are four kinds of Objects: Memory (NUMA nodes and Memory-side caches), I/O (Bridges,
PCIl and OS devices), Misc, and Normal (everything else, including Machine, Package, Die, Core, PU, CPU
Caches, etc.). Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc
don't.

See also

Kinds of object Type.

Processing Unit (PU) The smallest processing element that can be represented by a hwloc object. It may be a
single-core processor, a core of a multicore processor, or a single thread in a SMT processor (also sometimes
called "Logical processor", not to be confused with "Logical index of a processor"). hwloc's PU acronym
stands for Processing Unit.

Package A processor Package is the physical package that usually gets inserted into a socket on the motherboard.
It is also often called a physical processor or a CPU even if these names bring confusion with respect to cores
and processing units. A processor package usually contains multiple cores (and may also be composed of
multiple dies). hwloc Package objects were called Sockets up to hwloc 1.10.

NUMA Node An object that contains memory that is directly and byte-accessible to the host processors. It
is usually close to some cores as specified by its CPU set. Hence it is attached as a memory child
of the object that groups those cores together, for instance a Package objects with 4 Core children (see
Hierarchy, Tree and Levels).

Memory-side Cache A cache in front of a specific memory region (e.g. a range of physical addresses). It caches
all accesses to that region without caring about which core issued the request. This is the opposite of usual
CPU caches where only accesses from the local cores are cached, without caring about the target memory.

In hwloc, memory-side caches are memory objects placed between their local CPU objects (parent) and the
target NUMA node memory (child).

4.2 Indexes and Sets

OS or physical index The index that the operating system (OS) uses to identify the object. This may be com-
pletely arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may depend on the
BIOS configuration. That is why hwloc almost never uses them, only in the default Istopo output (P #x) and
cpuset masks. See also Should | use logical or physical/OS indexes? and how?.

Logical index Index to uniquely identify objects of the same type and depth, automatically computed by hwloc
according to the topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent

Generated by Doxygen

16 Terms and Definitions

logical indexes are adjacent in the topology. That is why hwloc almost always uses it in its API, since it
expresses logical proximity. They can be shown (as L#x) by 1stopo thanks to the —1 option. This index
is always linear and in the range [0, num_objs_same_type_same_level-1]. Think of it as ~“cousin rank.” The
ordering is based on topology first, and then on OS CPU numbers, so it is stable across everything except
firmware CPU renumbering. "Logical index" should not be confused with "Logical processor". A "Logical
processor" (which in hwloc we rather call "processing unit" to avoid the confusion) has both a physical index
(as chosen arbitrarily by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc).
See also Should | use logical or physical/OS indexes? and how?.

CPU set The set of processing units (PU) logically included in an object (if it makes sense). They are always
expressed using physical processor numbers (as announced by the OS). They are implemented as the
hwloc_bitmap_t opaque structure. hwloc CPU sets are just masks, they do not have any relation with an
operating system actual binding notion like Linux' cpusets. I/O and Misc objects do not have CPU sets while
all Normal and Memory objects have non-NULL CPU sets.

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are al-
ways expressed using physical node numbers (as announced by the OS). They are implemented with the
hwloc_bitmap_t opaque structure. as bitmaps. /O and Misc objects do not have Node sets while all Normal
and Memory objects have non-NULL nodesets.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or memory
nodes (Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

4.3 Hierarchy, Tree and Levels

Parent object The object logically containing the current object, for example because its CPU set includes the
CPU set of the current object. All objects have a non-NULL parent, except the root of the topology (Machine
object).

Ancestor object The parent object, or its own parent, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is included in the
CPU set of the current object. Each object may also contain separated lists for Memory, I/O and Misc object
children.

Arity The number of normal children of an object. There are also specific arities for Memory, I/O and Misc children.

Sibling objects Objects in the same children list, which all of them are normal children of the same parent, or all
of them are Memory children of the same parent, or I/O children, or Misc. They usually have the same type
(and hence are cousins, as well). But they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range [0, arity-1]
(respectively memory_arity, io_arity or misc_arity for Memory, 1/0 and Misc children of a parent).

Cousin objects Obijects of the same type (and depth) as the current object, even if they do not have the same
parent.

Level Set of objects of the same type and depth. All these objects are cousins.
Memory, I/O and Misc objects also have their own specific levels and (virtual) depth.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a
child is equal to the parent depth plus one, and an object depth is also equal to the number of parent/child
links between the root object and the given object. [f the topology is asymmetric, the difference between

some parent and child depths may be larger than one when some intermediate levels (for instance groups)
are missing in only some parts of the machine.

The depth of the Machine object is always 0 since it is always the root of the topology. The depth of PU
objects is equal to the number of levels in the topology minus one.

Memory, I/O and Misc objects also have their own specific levels and depth.

Generated by Doxygen

4.3 Hierarchy, Tree and Levels 17

The following diagram can help to understand the vocabulary of the relationships by showing the example of a
machine with two dual core packages (with no hardware threads); thus, a topology with 5 levels. Each box with
rounded corner corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical«—
_index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU objects at the bottom (depth
4 here).

Objects of the same level (cousins) are listed in red boxes and linked with red arrows. Children of the same parent
(siblings) are linked with blue arrows.

The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled. See
What happens if my topology is asymmetric? for more information about such strange topologies.

Machine .depth =0
level Jogical_index =0
depth=0 .os_index = -1

sibli k=0
sit 1rig_ran NUMA Node
.arity=2

.depth =-3

.memory_arity=1

c.——— == »| Jogical_index =0
children[1] parent .os_index =0
last_child .sibling_rank = 0
parent parent
Package Package
level next_sibling .depth=1
depth=1 Jogical_index =0 — Jogical_index =1
.0s_index =0 next_cousin prev_sibling .0os_index = 1
.sibling_rank=0 ~ .sibling_rank=1
.arity=2 prev_cousin .arity=2
children[0] children[0]
first_child first_child
parent
Cache Cache b Cache Cache
level depth =2 next_sibling ™ gepth = 2 depth =2
depth=2 Jogical_index =0 prev_sibling | -logical_index =1 Jogical_index =2\ |next_sibling
.0s_index =0 — .0os_index = 1 - .0s_index =0 \
o next_cousin o next_cousin o
.sibling_rank=0 .sibling_rank=1 .sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0]
first_child first_child first_child
last_child last_child last_child
parent parent parent parent
Core Core Core Core Core
level .depth =‘3 .dep-th = 3 .depth B 3 prev_siblin .degth :3
depth=3 Jogical_index =0 Jogical_index =1 Jogical_index =2 Jogical_index =3
.0s_index =0 . .os_index = 1 I .0s_index =0 . .os_index = 1
o next_cousin o next_cousin . next_cousin o
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0] children[0]
first_child first_child first_child first_child
last_child last_child last_child last_child
parent parent parent parent
PU PU PU PU PU
level .depth=4 .depth =4 .depth =4 .depth =4
depth=4 Jogical_index =0 Jogical_index =1 Jogical_index =2 Jogical_index =3
.os_index =0 . .os_index =2 I .0s_index =1 . .os_index =3
. next_cousin - next_cousin et next_cousin .
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0 prev_cousin (.arity=0

It should be noted that for PU objects, the logical index — as computed linearly by hwloc — is not the same as the
OS index.

The NUMA node is on the side because it is not part of the main tree but rather attached to the object that corre-
sponds to its locality (the entire machine here, hence the root object). It is attached as a Memory child (in green)
and has a virtual depth (negative). It could also have siblings if there were multiple local NUMA nodes, or cousins if
other NUMA nodes were attached somewhere else in the machine.

I/O or Misc objects could be attached in a similar manner.

Generated by Doxygen

18

Terms and Definitions

Generated by Doxygen

Chapter 5

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully
documented in its own manual page; the following is a summary of the available command line tools.

5.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-Is) displays the hierarchical topology map of the current system. The output may
be graphical, ascii-art or textual, and can also be exported to numerous file formats such as PDF, PNG, XML,
and others. Advanced graphical outputs require the "Cairo" development package (usually cairo-devel or
libcairo2-dev).

Istopo and Istopo-no-graphics accept the same command-line options. However, graphical outputs are only available
in Istopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are supported in both
Istopo and Istopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the ——ps option).
Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing
those systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file
and display it on a different system).

5.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an
executable to specific cores (or packages or bitmaps or ...). The hwloc-bind(1) man page provides much more detail
on what is possible.

hwloc-bind can also be used to retrieve the current process' binding, or retrieve the last CPU(s) where a process
ran, or operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or cpusets (bitmaps as reported
by hwloc-calc or hwloc-distrib).

5.3 hwloc-calc

hwloc-calc is hwloc's Swiss Army Knife command-line tool for converting things. The input may be either objects or
cpusets (bitmaps as reported by another hwloc-calc instance or by hwloc-distrib), that may be combined by addition,
intersection or subtraction. The output may be expressed as:

* acpuset bitmap: This compact opaque representation of objects is useful for shell scripts etc. It may passed
to hwloc command-line tools such as hwloc-calc or hwloc-bind, or to hwloc command-line options such as
lstopo —-restrict.

» anodeset bitmap: Another opaque representation that represents memory locality more precisely, especially
if some NUMA nodes are CPU less or if multiple NUMA nodes are local to the same CPUs.

» the amount of the equivalent hwloc objects from a specific type, or the list of their indexes. This is useful for
iterating over all similar objects (for instance all cores) within a given part of a platform.

Generated by Doxygen

20 Command-Line Tools

« a hierarchical description of objects, for instance a thread index within a core within a package. This gives a
better view of the actual location of an object.

Moreover, input and/or output may be use either physical/OS object indexes or as hwloc's logical object indexes.
It eases cooperation with external tools such as taskset or numactl by exporting hwloc specifications into list of
processor or NUMA node physical indexes. See also Should | use logical or physical/OS indexes? and how?.

5.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific attributes. It is intended to be used
with tools such as grep for filtering certain attribute lines. When no object is specified, or when ——topology is
passed, hwloc-info prints a summary of the topology. When ——support is passed, hwloc-info lists the supported
features for the topology.

5.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across the machine for the given
number of processes. These strings may be used with hwloc-bind to run processes to maximize their memory
bandwidth by properly distributing them across the machine.

5.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default,
hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

5.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information (see Custom string infos for
details) or Misc children objects. It may also add distances, memory attributes, etc. to the topology. It reads an
input topology from a XML file and outputs the annotated topology as another XML file.

5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences between
topologies instead of entire topologies.

5.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privileged) some topology and locality

information from raw hardware files (SMBIOS and ACPI tables) to human-readable and world-accessible files that

the hwloc library will later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi proc
See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

5.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a
tarball (and the corresponding Istopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions on the current machine into a
directory.

The output of hwloc-gather-cpuid is included in the tarball saved by hwloc-gather-topology when running on
Linux/x86.

Generated by Doxygen

5.10 hwloc-gather-topology and hwloc-gather-cpuid 21

These files may be used later (possibly offline) for simulating or debugging a machine without actually running on
it.

Generated by Doxygen

22

Command-Line Tools

Generated by Doxygen

Chapter 6

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_topology_set_xml()
had been called. This file may have been generated earlier with Istopo file.xml. For convenience, this backend
provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks,
HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the
underlying system. See also Importing and exporting topologies from/to XML files.

HWLOC_SYNTHETIC=synthetic_description enforces the discovery through a synthetic description string as
if hwloc_topology_set_synthetic() had been called. For convenience, this backend provides empty binding
hooks which just return success. See also Synthetic topologies.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or synthetic topology backends.
hwloc XML backends (see Importing and exporting topologies from/to XML files) can emit some error mes-
sages to the error output stream. Enabling these verbose messages within hwloc can be useful for un-
derstanding failures to parse input XML topologies. Similarly, enabling verbose messages in the synthetic
topology backend can help understand why the description string is invalid. See also Synthetic topologies.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_thissystem(), as if HWLOC_TOPOLOGY_FLAG_IS_THIS

was set with hwloc_topology_set_flags(). It means that it makes hwloc assume that the selected backend
provides the topology for the system on which we are running, even if it is not the OS-specific backend but
the XML backend for instance. This means making the binding functions actually call the OS-specific system
calls and really do binding, while the XML backend would otherwise provide empty hooks just returning
success. This can be used for efficiency reasons to first detect the topology once, save it to a XML file, and
quickly reload it later through the XML backend, but still having binding functions actually do bind. This also
enables support for the variable HWLOC_THISSYSTEM_ALLOWED_ RESOURCES.

HWLOC_THISSYSTEM_ALLOWED RESOURCES=1 Get the set of allowed resources from the na-
tive operating system even if the topology was loaded from XML or synthetic description, as if
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES was set with hwloc_topology_set_flags().
This variable requires the topology to match the current system (see the variable HWLOC_THISSYSTEM).
This is useful when the topology is not loaded directly from the local machine (e.g. for performance reason)
and it comes with all resources, but the running process is restricted to only a part of the machine (for
instance because of Linux Cgroup/Cpuset).

HWLOC_ALLOW=all Totally ignore administrative restrictions such as Linux Cgroups and consider all resources
(PUs and NUMA nodes) as allowed. This is different from setting HWLOC_TOPOLOGY_FLAG_INCLUDE«
_DISALLOWED which gathers all resources but marks the unavailable ones as disallowed.

HWLOC_HIDE_ERRORS=1 enables or disables verbose reporting of errors. The hwloc library may issue warn-
ings to the standard error stream when it detects a problem during topology discovery, for instance if the
operating system (or user) gives contradictory topology information.

By default (1), hwloc only shows critical errors such as invalid hardware topology information or invalid con-
figuration. If set to 0 (default in Istopo), more errors are displayed, for instance a failure to initialize CUDA or
NVML. If set to 2, no hwloc error messages are shown.

Generated by Doxygen

24 Environment Variables

Note that additional verbose messages may be enabled with other variables such as HWLOC_GROUPING+
_VERBOSE.

HWLOC_USE_NUMA_DISTANCES=7 enables or disables the use of NUMA distances. NUMA distances and
memory target/initiator information may be used to improve the locality of NUMA nodes, especially CPU-less
nodes. Bits in the value of this environment variable enable different features: Bit 0 enables the gathering of
NUMA distances from the operating system. Bit 1 further enables the use of NUMA distances to improve the
locality of CPU-less nodes. Bit 2 enables the use of target/initiator information.

HWLOC_MEMTIERS_GUESS=none

HWLOC_MEMTIERS_GUESS=all Disable or enable all heuristics to guess memory subtypes and tiers. By de-
fault, hwloc only uses heuristics that are likely correct and disables those that are unlikely.

HWLOC_MEMTIERS=0x0f=HBM;0xf=DRAM Enforce the memory tiers from the given semi-colon separated list.
Each entry specifies a bitmask (nodeset) of NUMA nodes and their subtype. Nodes not listed in any entry
are not placed in any tier.

If an empty value or none is given, tiers are entirely disabled.

HWLOC_MEMTIERS_REFRESH=1 Force the rebuilding of memory tiers. This is mostly useful when importing a
XML topology from an old hwloc version which was not able to guess memory subtypes and tiers.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc uses dis-
tance matrices between objects (either read from the OS or given by the user) to find groups of close objects.
These groups are described by adding intermediate Group objects in the topology. Setting this environ-
ment variable to 0 will disable this grouping. This variable supersedes the obsolete HWLOC_IGNORE_«
DISTANCES variable.

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default, objects may
be grouped if their distances form a minimal distance graph. When setting this variable to 0.02, and when
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE is given, these distances do not have to be
strictly equal anymore, they may just be equal with a 2% error. If set to t ry instead of a numerical value,
hwloc will try to group with perfect accuracy (0, the default), then with 0.01, 0.02, 0.05 and finally 0.1. Num-
bers given in this environment variable should always use a dot as a decimal mark (for instance 0.01 instead
of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages during grouping. If this variable
is set to 1, some debug messages will be displayed during distance-based grouping of objects even if debug
was not specific at configure time. This is useful when trying to find an interesting distance grouping accuracy.

HWLOC_CPUKINDS_RANKING=default change the ranking policy for CPU kinds. hwloc tries to rank CPU kinds
that are energy efficiency first, and then CPUs that are rather high-performance and power hungry.
By default, if available, the OS-provided efficiency is used for ranking. Otherwise, the frequency and/or core
types are used when available.
This environment variable may be set to coretype+frequency, coretype+frequency_strict,
coretype, frequency, frequency_base, frequency_max, forced_efficiency, no_<«
forced_efficiency,default, ornone.

HWLOC_CPUKINDS_MAXFREQ=adjust=10 change the use of the max frequency in the Linux backend. hwloc
tries to read the base and max frequencies of each core on Linux. Some hardware features such as Intel Turbo
Boost Max 3.0 make some cores report slightly higher max frequencies than others in the same CPU package.
Despite having slightly different frequencies, these cores are considered identical instead of exposing an
hybrid CPU. Hence, by default, hwloc uniformizes the max frequencies of cores that have the same base
frequency (higher values are downgraded by up to 10%).

If this environment variable is set to adjust=X, the 10% threshold is replaced with X. If set to 1, max
frequencies are not adjusted anymore, some homogeneous processors may appear hybrid because of this.
If set to 0, max frequencies are entirely ignored.

HWLOC_CPUKINDS_HOMOGENEOUS=0 uniformize max frequency, base frequency and Linux capacity to force
a single homogeneous kind of CPUs. This is enabled by default on NVIDIA Grace but may be disabled if set
to 0 (or enabled on other platforms if set to 1).

Generated by Doxygen

25

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file changes the locality of /0O devices behing the specified PCI
buses. If no I/O locality information is available or if the BIOS reports incorrect information, it is possible to
move a I/O device tree (OS and/or PCI devices with optional bridges) near a custom set of processors.
Localities are given either inside the environment variable itself, or in the pointed file. They may be separated
either by semi-colons or by line-breaks. Invalid localities are silently ignored, hence it is possible to insert
comments between actual localities.

Each locality contains a domain/bus specification (in hexadecimal numbers as usual) followed by a whitespace
and a cpuset:

*+ 0001 <cpuset> specifies the locality of all buses in PCl domain 0000.
* 0000:0f <cpuset> specifies only PCI bus 0f in domain 0000.
*+ 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a) within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses behind a bridge (including pri-
mary, secondary and subordinate buses). For instance, if hostbridge 0000:00 is above other bridges/switches
with buses 0000:01 to 0000:09, the variable should be HWLOC_PCI_LOCALITY="0000:00-09 <cpuset>".
It supersedes the old HWLOC_PCI_0000_00_LOCALCPUS=<cpuset> which only works when hostbridges
exist in the topology.

If the variable is defined to empty or invalid, no forced PCI locality is applied but hwloc's internal automatic
locality quirks are disabled, which means the exact PCI locality reported by the platform is used.

HWLOC_X86_TOPOEXT_NUMANODES=0 use AMD topoext CPUID leaf in the x86 backend to detect NUMA
nodes. When using the x86 backend, setting this variable to 1 enables the building of NUMA nodes from
AMD processor CPUID instructions. However this strategy does not always reflect BIOS configuration such
as NUMA interleaving. And node indexes may be different from those of the operating system. Hence this
should only be used when OS backends are wrong and the user is sure that CPUID returns correct NUMA
information.

HWLOC_KEEP_NVIDIA_GPU_NUMA_NODES=0 show or hide NUMA nodes that correspond to NVIDIA GPU
memory. By default they are ignored on POWER platforms to avoid interleaved memory being allocated on
GPU by mistake.

Setting this environment variable to 0 hides the NUMA nodes (default on POWER). Setting to 1 exposes these
NUMA nodes (default on non-POWER platforms such as NVIDIA Grace Hopper).

These NUMA nodes may be recognized by the GPUMemory subtype. They also have a PCIBusID info
attribute to identify the corresponding GPU.

HWLOC_KNL_MSCACHE_L3=0 Expose the KNL MCDRAM in cache mode as a Memory-side Cache instead of a
L3. hwloc releases prior to 2.1 exposed the MCDRAM cache as a CPU-side L3 cache. Now that Memory-side
caches are supported by hwloc, it is still exposed as a L3 by default to avoid breaking existing applications.
Setting this environment variable to 1 will expose it as a proper Memory-side cache.

HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=0 Expose Windows processor groups as hwloc Group ob-
jects. By default, these groups are disabled because they may be incompatible with the hierarchy of resources
that hwloc builds (leading to warnings). Setting this variable to 1 reenables the addition of these groups to the
topology.

This variable does not impact the querying of Windows processor groups using the dedicated API in
hwloc/windows.h, this feature is always supported.

HWLOC_ANNOTATE_GLOBAL_COMPONENTS=0 Allow components to annotate the topology even if they are
usually excluded by global components by default. Setting this variable to 1 and also setting HWLOC_ «
COMPONENTS=xml, pci, stop enables the addition of PCI vendor and model info attributes to a XML
topology that was generated without those names (if pciaccess was missing).

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified Linux
filesystem root instead of the main file-system root. This directory may have been saved previously from
another machine with hwloc-gather—-topology.

One should likely also set HRLOC_COMPONENTS=11inux, stop so that non-Linux backends are disabled
(the —1i option of command-line tools takes care of both).

Generated by Doxygen

26 Environment Variables

Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really
the underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/ forces the x86 backend to read dumped CPUIDs from the given directory
instead of executing actual x86 CPUID instructions. This directory may have been saved previously from
another machine with hwloc-gather—-cpuid.

One should likely also set HWLOC_COMPONENTS=x86, st op so that non-x86 backends are disabled (the
—1 option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty binding
hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM
should be set 1 in the environment too, to assert that the loaded CPUID dump is really the underlying system.

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/ loads files dumped by hwloc—-dump-hwdata (on
Linux) from the given directory. The default dump/load directory is configured during build based on --
runstatedir, --localstatedir, and --prefix options. It usually points to /var/run/hwloc/ in Linux distribution
packages, but it may also pointto $prefix/var/run/hwloc/ when manually installing and only speci-
fying --prefix.

HWLOC_COMPONENTS=list,of,components forces a list of components to enable or disable. Enable or disable
the given comma-separated list of components (if they do not conflict with each other). Component names
prefixed with — are disabled (a single phase may also be disabled).

Once the end of the list is reached, hwloc falls back to enabling the remaining components (sorted by priority)
that do not conflict with the already enabled ones, and unless explicitly disabled in the list. If stop is met,
the enabling loop immediately stops, no more component is enabled.

If xm1 or synthetic components are selected, the corresponding XML filename or synthetic description
string should be pass in HWLOC_XMLF ILE or HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components, it takes precedence over
environment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific component is loaded first, all
components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about components. Display messages
when components are registered or enabled. This is the recommended way to list the available components
with their priority (all of them are registered at startup).

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default search directory for plugins. By de-
fault, $1ibdir/hwloc is used. The variable may contain several colon-separated directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins. List which directories are scanned,
which files are loaded, and which components are successfully loaded.

HWLOC_PLUGINS_BLACKLIST=filename1,filename2,... prevents plugins from being loaded if their filename
(without path) is listed. Plugin filenames may be found in verbose messages outputted when HWLOC_«+
PLUGINS_VERBOSE-=1.

HWLOC_DEBUG_VERBOSE=0 disables all verbose messages that are enabled by default when —enable-debug
is passed to configure. When set to more than 1, even more verbose messages are displayed. The default is
1.

Generated by Doxygen

Chapter 7

CPU and Memory Binding Overview

Binding tasks and data buffers is hwloc's second main goal after discovering and exposing the hardware topology.
hwloc defines APIs to bind threads and processes to cores and processing units (see CPU binding), and to bind
memory buffers to NUMA nodes (see Memory binding). Some examples are available under doc/examples/ in the
source tree.

Sections below provide high-level insights on how these APIs work.

7.1 Binding Policies and Portability

hwloc binding APIs are portable to multiple operating systems. However operating systems sometimes define
slightly different policies, which means hwloc's behavior might slightly differ.

On the CPU binding side, OSes have different constraints of which sets of PUs can be used for binding (only full
cores, random sets of PUs, etc.). Moreover the HWLOC_CPUBIND_STRICT may be given to clarify what to do in
some corner cases. It is recommended to read CPU binding for details.

On the memory binding side, things are more complicated. First, there are multiple API for binding existing
memory buffers, allocating new ones, etc. Second, multiple policies exist (first-touch, bind, interleave, etc.) but
some of them are not implemented by all operating systems. Third, some of these policies have slightly dif-
ferent meanings. For instance, hwloc's bind (HWLOC_MEMBIND_BIND) uses Linux' MPOL_PREFERRED«
_MANY (or MPOL_PREFERRED) by default, but it switches to MPOL_BIND when strict binding is requested
(HWLOC_MEMBIND_STRICT). Reading Memory binding is strongly recommended.

7.2 Joint CPU and Memory Binding (or not)

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means
that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory
binding policy may change the CPU binding of the current thread. This is often not a problem for applications, so by
default hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the
HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU
binding. Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc
from using OS functions would change the memory binding policy. Of course, using these flags will reduce hwloc's
overall support for binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory,
touching each page in the allocated memory, and then changing the CPU binding. The already-really-allocated
memory will then be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy
gets changed by the CPU binding order, the already-allocated memory will not change with it. When binding and
allocating further memory, the CPU binding should be performed again in case the memory binding altered the
previously-selected CPU binding.

Generated by Doxygen

28 CPU and Memory Binding Overview

7.3 Current Memory Binding Policy

Not all operating systems support the notion of a "current” memory binding policy for the current process, but
such operating systems often still provide a way to allocate data on a given node set. Conversely, some operating
systems support the notion of a "current" memory binding policy and do not permit allocating data on a specific
node set without changing the current policy and allocate the data. To provide the most powerful coverage of these
facilities, hwloc provides:

» functions that set/get the current memory binding policies (if supported): hwloc_set _membind(),
hwloc_get_membind(), hwloc_set_proc_membind() and hwloc_get _proc_membind()

« a function that allocates memory bound to specific node set without changing the current memory binding
policy (if supported): hwloc_alloc_membind().

* a helper which, if needed, changes the current memory binding policy of the process in order to obtain
memory binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage separately the global process binding
policy and directed allocation, or use the third set of functions if it does not care about the process memory binding
policy. Again, reading Memory binding is strongly recommended.

Generated by Doxygen

Chapter 8

/0 Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report their locality
as well. This is useful for placing I/O intensive applications on cores near the 1/O devices they use, or for gathering
information about all platform components.

8.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) for performance reasons. It can be enabled by changing the fil-
tering of 1/0O object types to HWLOC_TYPE_FILTER_KEEP_IMPORTANT or HWLOC_TYPE_FILTER_KEEP_ALL
before loading the topology, for instance with hwloc_topology_set_io_types_filter ().

Note that 1/O discovery requires significant help from the operating system. The pciaccess library (the development
package is usually 1ibpciaccess—-devel or libpciaccess—dev) is needed to fully detect PCI devices
and bridges/switches. On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be used.
But it misses PCl device names. Moreover, some operating systems require privileges for probing PCl devices, see
Does hwloc require privileged access? for details.

The actual locality of /0O devices is only currently detected on Linux. Other operating system will just report 1/10
devices as being attached to the topology root object.

8.2 1/0 objects

When 1/O discovery is enabled and supported, some additional objects are added to the topology. The correspond-
ing I/O object types are:

* HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such as the sda drive or the ethO
network interface. See OS devices.

* HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_BRIDGE build up a PCI hierarchy made of bridges (that
may be actually be switches) and devices. See PCI devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_type_filter ().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to match their actual physical
location. For instance, if a /0 hub (or root complex) is physically connected to a package, the corresponding hwloc
bridge object (and its PCI bridges and devices children) is inserted as a child of the corresponding hwloc Package
object. These children are not in the normal children list but rather in the 1/0-specific children list.

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the
user applications for binding. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O
objects are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such
as hwloc_get_next_obj_by_type(). However, hwloc offers some dedicated helpers such as hwloc_get_next_pcidev()
and hwloc_get_next_osdev() for convenience (see Finding I/O objects).

8.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a user-space application can
hardly find out which PCI device it is actually using. Applications rather use software handles (such as the ethO

Generated by Doxygen

30 I/O Devices

network interface, the sda hard drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software
devices (HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached directly to normal objects. Indeed
some OS devices are not related to PCI. For instance, NVDIMM block devices (such as pmem0Os on Linux) are
directly attached near their NUMA node (I/O child of the parent whose memory child is the NUMA node). Also,
if hwloc could not discover PCI for some reason, PCl-related OS devices may also be attached directly to normal
objects.

Finally, OS subdevices may be exposed as OS devices children of another OS device. This is the case of LevelZero
subdevices for instance.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or mix4_0. However, this ability is
currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional /0O components using external libraries. For in-
stance proprietary graphics drivers do not expose any named OS device, but hwloc may still create one OS object
per software handle when supported. For instance the opencl and cuda components may add some openclOd0
and cuda0 OS device objects.

Here is a list of OS device objects commonly created by hwloc components when 1/O discovery is enabled and
supported.

» Hard disks or non-volatile memory devices (HWLOC_OBJ_OSDEV_BLOCK)
— sdaor dax2.0 (Linux component)
* Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)

— eth0, wlan0, ib0 (Linux component)
— hsn0 with "Slingshot" subtype for HPE Cray HSNs (Linux component).

» OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_OSDEV_OPENFABRICS)

— mix5_0, hfi1_0, qib0, usnic_0 (Linux component)

— bxi0 with "BXI" subtype for Atos/Bull BXI HCAs (Linux component) even if those are not really Open«
Fabrics.

GPUs (HWLOC_OBJ_OSDEV_GPU)
— rsmi0 for the first RSMI device ("RSMI" subtype, from the RSMI component, using the AMD ROCm SMI
library)

— nvmlO for the first NVML device ("NVML" subtype, from the NVML component, using the NVIDIA Man-
agement Library)

— :0.0for the first display ("Display" subtype, from the GL component, using the NV-CONTROL X extension
library, NVCtrl)

— card0 and renderD128 for DRM device files (from the Linux component, filtered-out by default because
considered non-important)
» Co-Processors (HWLOC_OBJ_OSDEV_COPROC)
— opencl0do for the first device of the first OpenCL platform, opencl1d3 for the fourth device of the second
OpenCL platform ("OpenCL" subtype, from the OpenCL component)

— zeOfor the first Level Zero device ("LevelZero" subtype, from the levelzero component, using the oneAPI
Level Zero library), and ze0.1 for its second subdevice (if any).

— cuda0for the first NVIDIA CUDA device ("CUDA" subtype, from the CUDA component, using the NVIDIA
CUDA Library)

— ve0 for the first NEC Vector Engine device ("VectorEngine" subtype, from the Linux component)
» DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

— dmaOchanO (Linux component) when all OS devices are enabled (HWLOC_TYPE_FILTER_KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the example below).
See also Interoperability With Other Software for managing these devices without considering them as hwloc ob-
jects.

Generated by Doxygen

8.4 PCI devices and bridges 31

8.4 PCl devices and bridges

A PCI hierarchy is usually organized as follows: A hostbridge object (HWLOC_OBJ_BRIDGE object with upstream
type Host and downstream type PCI) is attached below a normal object (usually the entire machine or a NUMA
node). There may be multiple hostbridges in the machine, attached to different places, but all PCI devices are
below one of them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to PCI switches) or PCl devices
(HWLOC_OBJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCI device depends on the
machine.

8.5 Consulting I/0 devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by_type())
or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding 1/O objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their
locality must be retrieved by walking up the object tree (through the parent link) until a non-I/O object is found
(see hwloc_get_non_io_ancestor_obj()). This normal object should have non-NULL CPU sets and node sets which
describe the processing units and memory that are immediately close to the I/O device. For instance the path from
a OS device to its locality may go across a PCI device parent, one or several bridges, up to a Package node with
the same locality.

Command-line tools are also aware of I/O devices. Istopo displays the interesting ones by default (passing
—-no-1io disables it).

hwloc-calc and hwloc-bind may manipulate 1/0 devices specified by PCl bus ID or by OS device name.

* pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI device whose bus ID is
given.

» os=ethO is replaced by CPUs that are close to the 1/O device whose software handle is called et hO0.

This enables easy binding of I/O-intensive applications near the device they use.

8.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected to the first package and
NUMA node.

Generated by Doxygen

32 1/0 Devices
Machine (24GE total)
Package L#0 Package L#1
NUMAMode L#D P#O (12GE) NUMAMode LEL PEL (12GE)
O—0
L3 (B192KEB) 0.4 0.2 | PCI D1:00.0 L3 (8192KE)
L2 (256KE] L2 (256KE] b2k =i L2 (256KE) L2 (256KE)
L1 (32KE) L1 (32KE) 0.2 | PCI 01:00.1 L1 (32KB) L1 (32KB)
Core LED Core L#1 boE8 = Core L#2 Core L#3
PU L#0 PU L#1 —{— PU L#2 PU L#3
P30 P2 0.2 0.2 | PCI 03:00.0 P#1 P#3
Block =da
___*:r_____
PCl 04:03.0
0.1 | PCI OD:1F.2
2.0 | PCI 51:00.0
Met ibD | | Net ibl
Met mixd O

Six interesting PCI devices were discovered (dark green boxes). However, hwloc found some corresponding soft-
ware devices (eth0, eth1, sda, mix4_0, ib0, and ib1 light grey boxes) for only four of these physical devices. The
other ones (PCI 04:03.0 and PCI 00:1£.2) are an unused IDE controller (no disk attached) and a graphic card (no
corresponding software device reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found for the last PCI device (PC/
51:00.0). Indeed this OpenFabrics HCA PCI device object contains one OpenFabrics software device (mix4_0) and
two virtual network interfaces (ib0 and ib1).

Here is the corresponding textual output:

Machine (24GB total)
Package L#0
NUMANode L#0 (P#0 12GB)
L3 L#0 (8192KB)
L2 L#0 (256KB)
L2 L#1 (256KB)
HostBridge
PCIBridge
PCI 01:00.0 (Ethernet)
Net "ethO"
PCI 01:00.1 (Ethernet)
Net "ethl"
PCIBridge
PCI 03:00.0 (RAID)
Block "sda"
PCIBridge
PCI 04:03.0
(
(

+ L1 L#0
+ L1 L#1

(32KB) + Core L#0 + PU L#0
(32KB) + Core L#1 + PU L#1

(P#0)
(P#2)

(VGAR)
IDE)
InfiniBand)

PCI 00:1f.2

PCI 51:00.0
Net "ib0O"
Net "ibl"
Net "mlx4_

Generated by Doxygen

8.6 Examples

33

Package L#1
NUMANode L#1 (P#1 12GB)
L3 L#1 (8192KB)
L2 L#2 (256KB) + L1 L#2
L2 L#3 (256KB) + L1 L#3

(32KB)
(32KB)

+ Core L#2 + PU L#2
+ Core L#3 + PU L#3

(P#1)
(P#3)

Generated by Doxygen

34

I/O Devices

Generated by Doxygen

Chapter 9

Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MI SC) either automatically or by the
user. This is a flexible way to annotate topologies with large sets of information since Misc objects may be inserted
anywhere in the topology (to annotate specific objects or parts of the topology), even below other Misc objects, and
each of them may contain multiple attributes (see also How do | annotate the topology with private notes?).

These Misc objects may have a subtype field to replace Misc with something else in the Istopo output.

9.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the Misc object type is not
filtered-out anymore. This currently includes:

* Memory modules (DIMMs), on Linux when privileged and when dmi-sysfs is supported by the kernel.
These objects have a subtype field of value MemoryModule. They are currently always attached to the

root object. Their attributes describe the DIMM vendor, model, etc. 1stopo -v displays them as:
Misc (MemoryModule) (P#1 DeviceLocation="Bottom-Slot 2 (right)" BankLocation="BANK 2" Vendor=Elpida
SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81UG8EFUO-GN-F ")

Displaying process binding in 1stopo —-top. These objects have a subtype field of value Process
and a name attribute made of their PID and program name. They are attached below the object they are

bound to. The textual 1 stopo displays them as:
PU L#0 (P#0)
Misc (Process) 4445 myprogram

9.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be achieved withhwloc_topology_insert_misc_
as well as hwloc-annotate command-line tool.

Generated by Doxygen

36

Miscellaneous objects

Generated by Doxygen

Chapter 10

Object attributes

10.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance their Llogical_index or
os_index (see Should | use logical or physical/OS indexes? and how?), depth or name.

The kind of object is first described by the ob j—>type generic attribute (an integer). OS devices also have a
specific obj—>attr->osdev. type integer for distinguishing between NICs, GPUs, etc.

Objects may also have an optional obj->subtype pointing to a better description string (displayed by Istopo
either in place or after the main ob j—>t ype attribute):

* NUMA nodes: subtype DRAM (for usual main memory), HBM (high-bandwidth memory), SPM (specific-
purpose memory, usually reserved for some custom applications), NVM (non-volatile memory when used
as main memory), MCDRAM (on KNL), GPUMemory (NVIDIA GPU memory shared over NVLink on POWER,
over NVLink-C2C on Grace Hopper, etc.), CXL-DRAM or CXL-NVM for CXL DRAM or non-volatile mem-
ory. Note that some of these subtypes are guessed by the library, they might be missing or slightly wrong
in some corner cases. See Heterogeneous Memory for details, and HWLOC_MEMTIERS and HWLOC_«
MEMTIERS_GUESS in Environment Variables for tuning these.

» Groups: subtype Cluster, Module, Tile, Compute Unit, Book or Drawer for different
architecture-specific groups of CPUs (see also What are these Group objects in my topology?).

+ OS devices (see also OS devices):

Co-processor: subtype OpenCL, LevelZero, CUDA, or VectorEngine.
GPU: subtype RSMI (AMD GPU) or NVML (NVIDIA GPU).

OpenFabrics: subtype BXTI (Bull/Atos BXI HCA).

Network: subtype S1ingshot (HPE Cray Slingshot Cassini HSN).

Block: subtype Disk, NVM (non-volatile memory), SPM (specific-purpose memory), CXLMem (CXL
volatile ou persistent memory), Tape, or Removable Media Device.

» L3 Caches: subtype MemorySideCache when hwloc is configured to expose the KNL MCDRAM in Cache
mode as a L3.

» PCl devices: subtype NVSwitch for NVLink switches (see also NVLinkBandwidth in Distances).
» Misc devices: subtype MemoryModule (see also Misc objects added by hwloc)

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr_u of type-
specific attribute structures. For instance, a L2Cache object obj contains cache-specific information in
obj->attr—->cache, such as its size and associativity, cache type. See hwloc_obj_attr_u for details.

10.2 Custom string infos

Aside of these generic attribute fields, hwloc annotates many objects with info attributes made of name and value
strings. Each object contains a list of such pairs that may be consulted manually (looking at the object infos

Generated by Doxygen

38 Object attributes

array field) or using the hwloc_obj_get_info_by_name(). The user may additionally add new name-value pairs to
any object using hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc. Note that these attributes
heavily depend on the ability of the operating system to report them. Many of them will therefore be missing on
some OS.

10.2.1 Hardware Platform Information

These info attributes are attached to the root object (Machine).

PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

SystemVersionRegister, ProcessorVersionRegister (Machine) Some POWER/PowerPC-specific attributes de-
scribing the platform and processor. Currently only available on Linux. Usually added to Package objects, but
can be in Machine instead if hwloc failed to discover any package.

DMIBoardVendor, DMIBoardName, etc. DMI hardware information such as the motherboard and chassis models
and vendors, the BIOS revision, etc., as reported by Linux under /sys/class/dmi/id/.

SoCO0ID, SoCOFamily, SoC1Revision, etc. The ID, family and revision of the first system-on-chip (SoC0), second
(SoC1), etc.

MemoryMode, ClusterMode Intel Xeon Phi processor configuration modes. Available if hwloc-dump-hwdata was
used (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?) or if hwloc man-
aged to guess them from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used as a cache) or Hybrid25 (25%
of MCDRAM as cache). The cluster mode may be Quadrant, Hemisphere, All2All, SNC2 or SNC4. See
doc/examples/get-knl-modes.c in the source directory for an example of retrieving these attributes.

10.2.2 Operating System Information

These info attributes are attached to the root object (Machine).

OSName, OSRelease, OSVersion, HostName, Architecture The operating system name, release, version, the
hostname and the architecture name, as reported by the Unix uname command.

LinuxCgroup The name the Linux control group where the calling process is placed.

WindowsBuildEnvironment Either MinGW or Cygwin when one of these environments was used during build.

10.2.3 hwloc Information

Unless specified, these info attributes are attached to the root object (Machine).

Backend (topology root, or specific object added by that backend) The name of the hwloc backend/component
that filled the topology. If several components were combined, multiple Backend pairs may exist, with different
values, for instance x86 and Linux in the root object and CUDA in CUDA OS device objects.

MemoryTiersNr The number of different memory tiers in the topology, if any. See Heterogeneous Memory.
SyntheticDescription The description string that was given to hwloc to build this synthetic topology.

hwlocVersion The version number of the hwloc library that was used to generate the topology. If the topology was
loaded from XML, this is not the hwloc version that loaded it, but rather the first hwloc instance that exported
the topology to XML earlier.

ProcessName The name of the process that contains the hwloc library that was used to generate the topology.
If the topology was from XML, this is not the hwloc process that loaded it, but rather the first process that
exported the topology to XML earlier.

Generated by Doxygen

10.2 Custom string infos 39

10.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if package locality information
is missing.

CPUModel The processor model name.

CPUVendor, CPUModelNumber, CPUFamilyNumber, CPUStepping The processor vendor name, model num-
ber, family number, and stepping number. Currently available for x86 and Xeon Phi processors on most
systems, and for ia64 processors on Linux (except CPUStepping).

CPUFamily The family of the CPU, currently only available on Linux on LoongArch platforms.
CPURevision A POWER/PowerPC-specific general processor revision number, currently only available on Linux.

CPUType A Solaris-specific general processor type name, such as "i86pc".

10.2.5 OS Device Information
These info attributes are attached to OS device objects specified in parentheses.

Vendor, Model, Revision, Size, SectorSize (Block OS devices) The vendor and model names, revision, size (in
KiB = 1024 bytes) and SectorSize (in bytes).

LinuxDevicelD (Block OS devices) The major/minor device number such as 8:0 of Linux device.
SerialNumber (Block and CXL Memory OS devices) The serial number of the device.

CXLRAMSize, CXLPMEMSize (CXL Memory Block OS devices) The size of the volatile (RAM) or persistent
(PMEM) memory in a CXL Type-3 device. Sizes are in KiB (1024 bytes).

GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and model names of the GPU device.
OpenCLDeviceType, OpenCLPlatformindex,

OpenCLPlatformName, OpenCLPlatformDevicelndex (OpenCL OS devices) The type of OpenCL device, the
OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize (OpenCL OS devices) The number of compute units and
global memory size of an OpenCL device. Sizes are in KiB (1024 bytes).

LevelZeroVendor, LevelZeroModel, LevelZeroBrand,

LevelZeroSerialNumber, LevelZeroBoardNumber (LevelZero OS devices) The name of the vendor, device
model, brand of a Level Zero device, and its serial and board numbers.

LevelZeroDriverindex, LevelZeroDriverDevicelndex (LevelZero OS devices) The index of the Level Zero
driver within the list of drivers, and the index of the device within the list of devices managed by this driver.

LevelZeroUUID (LevelZero OS devices or subdevices) The UUID of the device or subdevice.
LevelZeroSubdevices (LevelZero OS devices) The number of subdevices below this OS device.
LevelZeroSubdevicelD (LevelZero OS subdevices) The index of this subdevice within its parent.

LevelZeroDeviceType (LevelZero OS devices or subdevices) A string describing the type of device, for in-
stance "GPU", "CPU", "FPGA", etc.

LevelZeroNumSlices, LevelZeroNumSubslicesPerSlice,

LevelZeroNumEUsPerSubslice, LevelZeroNumThreadsPerEU (LevelZero OS devices or subdevices) The
number of slices in the device, of subslices per slice, of execution units (EU) per subslice, and of threads per
EU.

LevelZeroHBMSize, LevelZeroDDRSize, LevelZeroMemorySize (LevelZero OS devices or subdevices) The
amount of HBM or DDR memory of a LevelZero device or subdevice. Sizes are in KiB (1024 bytes). If the
type of memory could not be determined, the generic name LevelZeroMemorySize is used. For devices that
contain subdevices, the amount reported in the root device includes the memories of all its subdevices.

Generated by Doxygen

40 Object attributes

LevelZeroCQGroups, LevelZeroCQGroup2 (LevelZero OS devices or subdevices) The number of completion
queue groups, and the description of the third group (as Nx0xX where N is the number of queues in the
group, and 0xX is the hexadecimal bitmask of ze_ command_queue_group_property_flag_t list-
ing properties of those queues).

AMDUUID, AMDSerial (RSMI GPU OS devices) The UUID and serial number of AMD GPUs.

RSMIVRAMSize, RSMIVisibleVRAMSize, RSMIGTTSize (RSMI GPU OS devices) The amount of GPU mem-
ory (VRAM), of GPU memory that is visible from the host (Visible VRAM), and of system memory that is
usable by the GPU (Graphics Translation Table). Sizes are in KiB (1024 bytes).

XGMIHivelD (RSMI GPU OS devices) The ID of the group of GPUs (Hive) interconnected by XGMI links

XGMIPeers (RSMI GPU OS devices) The list of RSMI OS devices that are directly connected to the current device
through XGMI links. They are given as a space-separated list of object names, for instance rsmi2 rsmi3.

NVIDIAUUID, NVIDIASerial (NVML GPU OS devices) The UUID and serial number of NVIDIA GPUs.
CUDAMultiProcessors, CUDACoresPerMP,

CUDAGIobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices) The
number of shared multiprocessors, the number of cores per multiprocessor, the global memory size, the
(global) L2 cache size, and size of the shared memory in each multiprocessor of a CUDA device. Sizes are
in KiB (1024 bytes).

VectorEngineModel, VectorEngineSerialNumber (VectorEngine OS devices) The model and serial number of
a VectorEngine device.

VectorEngineCores, VectorEngineMemorySize, VectorEngineLLCSize,

VectorEngineL2Size, VectorEngineL1dSize, VectorEngineL1iSize (VectorEngine OS devices) The number
of cores, memory size, and the sizes of the (global) last level cache and of L2, L1d and L1i caches of a
VectorEngine device. Sizes are in KiB (1024 bytes).

VectorEngineNUMAPartitioned (VectorEngine OS devices) If this attribute exists, the VectorEngine device is
configured in partitioned mode with multiple NUMA nodes.

Address, Port (Network interface OS devices) The MAC address and the port number of a software network
interface, such as eth4 on Linux.

NodeGUID, SysimageGUID, Port1State, Port2LID, Port2LMC, Port3GID1 (OpenFabrics OS devices) The
node GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID mask
count of port #2, and GID #1 of port #3.

BXIUUID (OpenFabrics BXI OS devices) The UUID of an Atos/Bull BXI HCA.

10.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

MemoryTier (NUMA Nodes) The rank of the memory tier of this node. Ranks start from 0 for highest bandwidth
nodes. The attribute is only set if multiple tiers are found. See Heterogeneous Memory.

CXLDevice (NUMA Nodes or DAX Memory OS devices) The PCI/CXL bus ID of a device whose CXL Type-3
memory is exposed here. If multiple devices are interleaved, their bus IDs are separated by commas, and the
number of devices in reported in CXLDevicelnterleaveWays.

CXLDevicelnterleaveWays (NUMA Nodes or DAX Memory OS devices) If multiple CXL devices are inter-
leaved, this attribute shows the number of devices (and the number of bus IDs in the CXLDevice attributes).

DAXDevice (NUMA Nodes) The name of the Linux DAX device that was used to expose a non-volatile memory
region as a volatile NUMA node.

DAXType (NUMA Nodes or DAX OS devices) The type of memory exposed in a Linux DAX device or in the cor-
responding NUMA node, either "NVM" (non-volatile memory) or "SPM" (specific-purpose memory).

Generated by Doxygen

10.2 Custom string infos 41

DAXParent (NUMA Nodes or DAX OS devices) A string describing the Linux sysfs hierarchy that exposes the
DAX device, for instance containing "hmem1" for specific-purpose memory or "ndbus0" for NVDIMMs.

PCIBusID (GPUMemory NUMA Nodes) The PCI bus ID of the GPU whose memory is exposed in this NUMA
node.

Inclusive (Caches) The inclusiveness of a cache (1 if inclusive, 0 otherwise). Currently only available on x86
processors.

SolarisProcessorGroup (Group) The Solaris kstat processor group name that was used to build this Group ob-
ject.

PCIVendor, PCIDevice (PCI devices and bridges) The vendor and device names of the PCI device.

PCISlot (PCI devices or Bridges) The name/number of the physical slot where the device is plugged. If the
physical device contains PCI bridges above the actual PCIl device, the attribute may be attached to the
highest bridge (i.e. the first object that actually appears below the physical slot).

Vendor, AssetTag, PartNumber, DeviceLocation, BankLocation, FormFactor, Type, Size, Rank (MemoryModule Misc objects;
Information about memory modules (DIMMSs) extracted from SMBIOS. Size is in KiB.

10.2.7 User-Given Information

Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

IstopoStyle Enforces the style of an object (background and text colors) in the graphical output of Istopo. See
CUSTOM COLORS in the Istopo(1) manpage for details.

Generated by Doxygen

42

Object attributes

Generated by Doxygen

Chapter 11

Topology Attributes: Distances, Memory
Attributes and CPU Kinds

Besides the hierarchy of objects and individual object attributes (see Object attributes), hwloc may also expose finer
information about the hardware organization.

11.1 Distances

A machine with 4 CPUs may have identical links between every pairs of CPUs, or those CPUs could also only be
connected through a ring. In the ring case, accessing the memory of nearby CPUs is slower than local memory, but
it is also faster than accessing the memory of CPU on the opposite side of the ring. These deep details cannot be
exposed in the hwloc hierarchy, that is why hwloc also exposes distances.

Distances are matrices of values between sets of objects, usually latencies or bandwidths. By default, hwloc tries
to get a matrix of relative latencies between NUMA nodes when exposed by the hardware.

In the aforementioned ring case, the matrix could report 10 for latency between a NUMA node and itself, 20 for
nearby nodes, and 30 for nodes that are opposites on the ring. Those are theoretical values exposed by hardware
vendors (in the System Locality Distance Information Table (SLIT) in the ACPI) rather than physical latencies. They
are mostly meant for comparing node relative distances.

Distances structures currently created by hwloc are:

NUMALatency (Linux, Solaris, FreeBSD) This is the matrix of theoretical latencies described above.

XGMIBandwidth (RSMI) This is the matrix of unidirectional XGMI bandwidths between AMD GPUs (in MB/s). It
contains 0 when there is no direct XGMI link between objects. Values on the diagonal are artificially set to
very high so that local access always appears faster than remote access.

GPUs are identified by RSMI OS devices such as "rsmi0". They may be converted into the corresponding
OpenCL or PCI devices using hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something
more convenient, for instance by replacing bandwidths with numbers of links between peers.

XGMIHops (RSMI) This matrix lists the number of XGMI hops between AMD GPUs. It reports 1 when there is a
direct link between two distinct GPUs. If there is no XGMI route between them, the value is 0. The number of
hops between a GPU and itself (on the diagonal) is 0 as well.

XeLinkBandwidth (LevelZero) This is the matrix of unidirectional XeLink bandwidths between Intel GPUs (in
MB/s). It contains 0 when there is no direct XeLink between objects. When there are multiple links, their
bandwidth is aggregated.

Values on the diagonal are artificially set to very high so that local access always appears faster than remote
access. This includes bandwidths between a (sub)device and itself, between a subdevice and its parent
device, or between two subdevices of the same parent.

The matrix interconnects all LevelZero devices and subdevices (if any), even if some of them may have no
link at all.

The bandwidths of links between subdevices are accumulated in the bandwidth between their parents.

Generated by Doxygen

44 Topology Attributes: Distances, Memory Attributes and CPU Kinds

NVLinkBandwidth (NVML) This is the matrix of unidirectional NVLink bandwidths between NVIDIA GPUs (in
MB/s). It contains 0 when there is no direct NVLink between objects. When there are multiple links, their
bandwidth is aggregated. Values on the diagonal are artificially set to very high so that local access always
appears faster than remote access.

On POWER platforms, NVLinks may also connects GPUs to CPUs. On NVIDIA platforms such as DGX-2,
a NVSwitch may interconnect GPUs through NVLinks. In these cases, the distances structure is heteroge-
neous. GPUs always appear first in the matrix (as NVML OS devices such as "nvml0"), and non-GPU objects
may appear at the end (Package for POWER processors, PCI device for NVSwitch).

NVML OS devices may be converted into the corresponding CUDA, OpenCL or PCl devices using
hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something
more convenient, for instance by removing switches or CPU ports, or by replacing bandwidths with numbers
of links between peers.

When a NVSwitch interconnects GPUs, only links between one GPU and different NVSwitch ports are re-
ported. They may be merged into a single switch port with hwloc_distances_transform() or hwloc-annotate.
Or a transitive closure may also be applied to report the bandwidth between GPUs across the NVSwitch.

Users may also specify their own matrices between any set of objects, even if these objects are of different types
(e.g. bandwidths between GPUs and CPUs).

The entire API is located in hwloc/distances.h. See also Retrieve distances between objects, as well as
Helpers for consulting distance matrices and Add distances between objects.

11.2 Memory Attributes

Machines with heterogeneous memory, for instance high-bandwidth memory (HBM), normal memory (DDR), and/or
high-capacity slow memory (such as non-volatile memory DIMMs, NVDIMMSs) require applications to allocate buffers
in the appropriate target memory depending on performance and capacity needs. Those target nodes may be
exposed in the hwloc hierarchy as different memory children but there is a need for performance information to
select the appropriate one.

hwloc memory attributes are designed to expose memory information such as latency, bandwidth, etc. Users may
also specify their own attributes and values.

The memory attributes APl is located in hwloc/memattrs.h, see Comparing memory node attributes for finding where to allocate on
and Managing memory attributes for details. See also an example in doc/examples/memory-attributes.c in the
source free.

Memory attributes are the low-level solution to selecting target memory. hwloc uses them internally to build
Memory Tiers which provide an easy way to distinguish NUMA nodes of different kinds, as explained in
Heterogeneous Memory.

11.3 CPU Kinds

Hybrid CPUs may contain different kinds of cores. The CPU kinds API in hwloc/cpukinds.h provides a way to list
the sets of PUs in each kind and get some optional information about their hardware characteristics and efficiency.
If the operating system provides efficiency information (e.g. Windows 10, MacOS X / Darwin and some Linux
kernels), it is used to rank hwloc CPU kinds by efficiency. Otherwise, hwloc implements several heuristics based on
frequencies and core types (see HWLOC_CPUKINDS_RANKING in Environment Variables).

The ranking shows energy-efficient CPUs first, and high-performance power-hungry cores last.

These CPU kinds may be annotated with the following native attributes:

FrequencyMaxMHz (Linux) The maximal operating frequency of the core, as reported by cpufreq drivers on
Linux.

FrequencyBaseMHz (Linux) The base/nominal operating frequency of the core, as reported by some cpufreqg
or ACPI drivers on Linux (e.g. cpufreq_cppcor intel_pstate).

CoreType (x86) A string describing the kind of core, currently IntelAtom, IntelCore or IntelLowPower,
as reported by the x86 CPUID instruction and Linux PMU on some Intel processors.

Generated by Doxygen

11.3 CPU Kinds 45

LinuxCapacity (Linux) The Linux-specific CPU capacity found in sysfs, as reported by the Linux kernel on
some recent platforms. Higher values usually mean that the Linux scheduler considers the core as high-
performance rather than energy-efficient.

LinuxCPUType (Linux) The Linux-specific CPU type found in sysfs, such as intel_atom_0, as reported by
future Linux kernels on some Intel processors.

DarwinCompatible (Darwin / Mac OS X) The compatibility attribute of the CPUs as found in the 10 reg-
istry on Darwin / Mac OS X. For instance apple, icestorm; ARM, v8 for energy-efficient cores and
apple, firestorm; ARM, v8 on performance cores on Apple M1 CPU.

The hwloc-calc tool may be used to query the number of cpukinds or which ones exist in some cores:
$ hwloc-calc -N cpukind all
2

$ hwloc-calc -I cpukind package:0
0,1

See Kinds of CPU cores for details.

Generated by Doxygen

46

Topology Attributes: Distances, Memory Attributes and CPU Kinds

Generated by Doxygen

Chapter 12

Heterogeneous Memory

Heterogeneous memory hardware exposes different NUMA nodes for different memory technologies. On the image
below, a dual-socket server has both HBM (high bandwidth memory) and usual DRAM connected to each socket,
as well as some CXL memory connected to the entire machine.

Machine {3120MiE total)

CoL-DRAM L#2 (1024MiB)

Package L#0 Package L#1
DRAM L#0 (1024MiE) HEM L#1 (1024MiB) DRAM L#2 (1024MiB) HEM L&E3 (1024MiB)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#d Core L#5 Core L#6 Core L#7

The hardware usually exposes "default" memory first because it is where "normal” data buffers should be allocated
by default.

However there is no guarantee about whether HBM, NVM, CXL will appear second. Hence there is a need to explicit
memory technologies and performance to help users decide where to allocate.

12.1 Memory Tiers and Default nodes

hwloc builds Memory Tiers to identify different kinds of NUMA nodes. On the above machine, the first tier would
contain both HBM NUMA nodes (L#1 and L#3), while the second tier would contain both DRAM nodes (L#0 and
L#2), and the CXL memory (L#4) would be in the third tier. NUMA nodes are then annotated accordingly:

» Each node object has its subtype field set to HBM, DRAM or CXL—-DRAM (see other possible values in
Normal attributes).

» Each node also has a string info attribute with name MemoryTier and value O for the first tier, 1 for the
second, etc.

Tiers are built using two kinds of information:

+ First hwloc looks into operating system information to find out whether a node is non-volatile, CXL, special-
purpose, etc.

» Then it combines that knowledge with performance metrics exposed by the hardware to guess what's actually
DRAM, HBM, etc. These metrics are also exposed in hwloc Memory Attributes, for instance bandwidth and la-
tency, for read and write. See Memory Attributes and Comparing memory node attributes for finding where to allocate on
for more details.

Once nodes with similar or different characteristics are identified, they are placed in tiers. Tiers are then sorted by
bandwidth so that the highest bandwidth is ranked first, etc.

Generated by Doxygen

48 Heterogeneous Memory

If hwloc fails to build tiers properly, see HWRLOC_MEMTIERS and HWLOC_MEMTIERS_GUESS in Environment Variables.

hwloc also tries to identify "default" memory nodes. They usually correspond the tier containing DRAM nodes.
These are where normal data buffers should be allocated from, but they may also be used when placing tasks per
NUMA domain (to hide NUMA nodes with overlapping localities, e.g. HBM and CXL in our example above).

12.2 Using Heterogeneous Memory from the command-line

Specific kinds or tiers of memory may be specified in location filters when using NUMA nodes in hwloc command-
line tools. For instance, binding memory on the first HBM node (numa [hbm] : 0) is actually equivalent to binding
on the second node (numa : 1) on our example platform:

$ hwloc-bind --membind ’numa[hbm]:0’ -- myprogram
$ hwloc-bind --membind ’numa:1l’ -- myprogram

To count DRAM nodes in the first CPU package, or all nodes:

$ hwloc-calc -N ’'numal[dram]’ package:0
1

$ hwloc-calc -N ’'numa’ package:0

2

To list all default NUMA nodes:

$ hwloc-calc —--default-nodes all
0,2

To list all the physical indexes of Tier-0 NUMA nodes (HBM P#2 and P#3 not shown on the figure):

$ hwloc-calc -I ’'numaltier=0]’ -p all
2,3

To find the memory kind of a NUMA node, one may look at its info attribute or use hwloc-calc:

$ hwloc-info --get-attr "info MemoryTier" numa:1l
1

$ hwloc-calc -I memorytier numa:l

1

The number of tiers may be retrieved by looking at topology attributes in the root object, of by counting tiers inside
it:

$ hwloc-info --get-attr "info MemoryTiersNr" topology

2

$ hwloc-calc --N memorytier all
2

hwloc-calc and hwloc-bind also have options such as ——local-memory and ——best-memattr to select the
best NUMA node among the local ones. For instance, the following command-lines say that, among nodes near
node:0 (DRAM L#0), the best one for latency is itself while the best one for bandwidth is node:1 (HBM L#1).

$ hwloc-calc --best-memattr latency node:0

0

$ hwloc-calc --best-memattr bandwidth node:0
1

12.3 Using Heterogeneous Memory from the C API

There are two major changes introduced by heterogeneous memory when looking at the hierarchical tree of objects.

« First, there may be multiple memory children attached at the same place. For instance, each Package in the
above image has two memory children, one for the DRAM NUMA node, and another one for the HBM node.

« Second, memory children may be attached at different levels. In the above image, CXL memory is attached
to the root Machine object instead of below a Package.

Hence, one may have to rethink the way it selects NUMA nodes.

Generated by Doxygen

12.3 Using Heterogeneous Memory from the C API 49

12.3.1 lterating over the list of (heterogeneous) NUMA nodes

A common need consists in iterating over the list of NUMA nodes (e.g. using hwloc_get_next_obj_by_type()). This
is useful for counting some domains before partitioning a job, or for finding a node that is local to some objects.
With heterogeneous memory, one should remember that multiple nodes may now have the same locality (HBM and
DRAM above) or overlapping localities (e.g. DRAM and CXL above).

» Checking NUMA node subtype or tier attributes is a good way to avoid this issue by ignoring nodes of different
kinds.

 Another solution consists in ignoring nodes whose CPU set overlap the previously selected ones. For in-
stance, in the above example, one could first select DRAM L#0 but ignore HBM L#1 (because it overlaps with
DRAM L#0), then select DRAM L#2 but ignore HBM L#3 and CXL L#4 (overlap wih DRAM L#2).

hwloc set of default nodes (returned by hwloc_topology get default_nodeset()) was designed for this
purpose: it ignores NUMA nodes with overlapping CPU set (only the first one is kept), and also tries to re-
turn nodes with similar subtypes.

It is also possible to iterate over the memory parents (e.g. Packages in our example) and select only one mem-
ory child for each of them. hwloc_get_memory_parents_depth() may be used to find the depth of these parents.
However this method only works if all memory parents are at the same level. It would fail in our example: the
root Machine object also has a memory child (CXL), hence hwloc_get_memory_parents_depth() would returns
HWLOC_TYPE_DEPTH_MULTIPLE.

12.3.2 lterating over local (heterogeneous) NUMA nodes

Another common need is to find NUMA nodes that are local to some objects (e.g. a Core). A basic solution consists
in looking at the Core nodeset and iterating over NUMA nodes to select those whose nodeset are included. A nicer
solution is to walk up the tree to find ancestors with a memory child. With heterogeneous memory, multiple such
ancestors may exist (Package and Machine in our example) and they may have multiple memory children.

Both these methods may be replaced with hwloc_get_local_numanode_objs() which provides a convenient and
flexible way to retrieve local NUMA nodes. One may then iterate over the returned array to select the appropriate
one(s) depending on their subtype, tier or performance attributes.

hwloc_memattr_get_best_target() is also a convenient way to select the best local NUMA node according to perfor-
mance metrics. See also Comparing memory node attributes for finding where to allocate on.

Generated by Doxygen

50

Heterogeneous Memory

Generated by Doxygen

Chapter 13

Importing and exporting topologies
from/to XML files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for loading
topologies faster (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process),
manipulating other nodes' topology, or avoiding the need for privileged processes (see Does hwloc require privileged access?).
Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with
hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and hwloc_topology_set_xmlbuffer().

The HWLOC_XMLFILE environment variable also tells hwloc to load the topology from the given XML file (see
Environment Variables).

Note

Loading XML topologies disables binding because the loaded topology may not correspond to the
physical machine that loads it. This behavior may be reverted by asserting that loaded file re-
ally matches the underlying system with the HWLOC_THISSYSTEM environment variable or the
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES may be used to
load a XML topology that contains the entire machine and restrict it to the part that is actually available to the
current process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources).

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported topology
can be reloaded on any other machine without requiring to change the locale.

XML exports contain all details about the platform. It means that two very similar nodes still have different
XML exports (e.g. some serial numbers or MAC addresses are different). If a less precise exporting/importing
is required, one may want to look at Synthetic topologies instead.

13.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance
when those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend
is enabled by default if libxmlI2 development headers are available (the relevant development package is usually
libxml2-devel or libxml2-dev).

If libxmlI2 is not available at configure time, or if ——disable-1ibxml2 is passed, hwloc falls back to a custom
backend. Contrary to the aforementioned full XML backend with libxmlI2, this minimalistic XML backend cannot
be guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc
release (even if using the libxmI2 backend). Its advantage is, however, to always be available without requiring any
external dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxmI2 support may be built as
a dynamicall-loaded plugin. One should pass ——enable—-plugins to enable plugin support (when supported)
and build as plugins all component that support it. Or pass ——enable-plugins=xml_1libxml to only build
this libxml2 support as a plugin.

Generated by Doxygen

52 Importing and exporting topologies from/to XML files

13.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax, non-hwloc-valid XML contents,

or incompatibilities between hwloc releases (see Are XML topology files compatible between hwloc releases?).

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology_set_xml()
or hwloc_topology_set_xmilbuffer() is called). Some errors such non-hwloc-valid contents can only be detected later
when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology set xml() (or
hwloc_topology_set_xmlbuffer()) and hwloc_topology_load() to handle all these errors.

Generated by Doxygen

Chapter 14

Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware available.
Aside from loading XML topologies, hwloc also enables the building of synthetic topologies that are described by a
single string listing the arity of each levels.

For instance, Istopo may create a topology made of 2 packages, containing a single NUMA node and a L2 cache
above two single-threaded cores:

$ lstopo -1 "pack:2 node:1 12:1 core:2 pu:l" -
Machine (2048MB)
Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#l1 + PU L#l (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with £ile.xml in this command line will export this topology to XML as usual.
Note

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine. ltis a lot
less precise than XML but may still be enough when only the hierarchy of resources matters.

14.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each object of
the previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, 12u, 111, pu, group (hwloc_obj_type_+«
sscanf() is used for parsing the type names). They do not need to be written case-sensitively, nor entirely (as long
as there is no ambiguity, 2 characters such as ma select a Machine level). Note that I/O and Misc objects are not
available.

Instead of specifying the type of each level, it is possible to just specify the arities and let hwloc choose all types
according to usual topologies. The following examples are therefore equivalent:

$ lstopo -1 "2 3 4 5 6"
$ lstopo -1 "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

NUMA nodes are handled in a special way since they are not part of the main CPU hierarchy but rather attached
below it as memory children. Thus, NUMANode : 3 actually means Group : 3 where one NUMA node is attached
below each group. These groups are merged back into the parent when possible (typically when a single NUMA
node is requested below each parent).

It is also possible the explicitly attach NUMA nodes to specific levels. For instance, a topology similar to a Intel Xeon
Phi processor (with 2 NUMA nodes per 16-core group) may be created with:

$ lstopo -i "package:1l group:4 [numa] [numa] core:16 pu:4"

Generated by Doxygen

54 Synthetic topologies

The root object does not appear in the synthetic description string since it is always a Machine object. Therefore
the Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

* L2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may be
specified in bytes (without any unit suffix) or as kB, KiB, MB, MiB, etc.

* NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be specified in
bytes (without any unit suffix) or as GB, GiB, TB, TiB, etc.

* PU:2 (indexes=0,2,1, 3) specifies 2 PU children and the full list of OS indexes among the entire set of
4 PU objects.

* PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by NUMA node
first and then by package.

« Attributes in parentheses at the very beginning of the description apply to the root object.

hwloc command-line tools may modify a synthetic topology, for instance to customize object attributes, or
to remove some objects to make the topology heterogeneous or asymmetric. See many examples in
How do | create a custom heterogeneous and asymmetric topology?.

14.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by passing the synthetic description
string to hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthetic component. This component may be enabled by force by
setting the HWLOC_SYNTHETIC environment variable to something such as node:2 core:3 pu:4.

Loading a synthetic topology disables binding support since the topology usually does not match the underlying
hardware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the environment or by setting
the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

14.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a convenient
way to quickly describe the contents of a machine. The Istopo tool may also perform such an export by forcing the
output format.

$ lstopo —--of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 LldCache:1 LliCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology (see also
Are synthetic strings compatible between hwloc releases?). The entire tree will be similar, but some attributes
such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the symmetric_subtree
field of the root object is set. Also memory children should be attached in a symmetric way (e.g. the same number
of memory children below each Package object, etc.). However, 1/0O devices and Misc objects are ignored when
looking at symmetry and exporting the string.

Generated by Doxygen

Chapter 15

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable li-
braries that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting
between those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core
therefore generally does not explicitly depend on these types of libraries. However, when a custom application uses
or otherwise depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc
interface with dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the local
machine. If so, the helper requires the input topology to match the current machine. Some helpers also require 1/0
device discovery to be supported and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the
Linux system, such as binding threads through their thread ID ("tid") or parsing kernel CPU mask files. See
Linux-specific helpers.

Windows specific features hwloc/windows.h offers Windows-specific helpers to query information about Win-
dows processor groups. See Windows-specific helpers.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and libnuma-specific
types, such as bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets. See
Interoperability with Linux libnuma bitmask and Interoperability with Linux libnuma unsigned long masks.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc with
functions such as sched_getaffinity() or pthread_attr_setaffinity_np(). See Interoperability with glibc sched affinity.

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs interface. For
example, it can return a list of processors near an OpenFabrics device. It may also return the cor-
responding OS device hwloc object for further information (if 1/0O device discovery is enabled). See
Interoperability with OpenFabrics.

OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD and NVIDIA imple-
mentations currently offer locality information. It may return the list of processors near a GPU given as a
cl_device_id. It may also return the corresponding OS device hwloc object for further information (if I/O
device discovery is enabled). See Interoperability with OpenCL.

oneAPI Level Zero hwloc/levelzero.h enables interoperability with the oneAPl Level Zero interface. It
may return the list of processors near an accelerator or GPU. It may also return the correspond-
ing OS device hwloc object for further information (if I/O device discovery is enabled). See
Interoperability with the oneAPI Level Zero interface..

AMD ROCm SMI Library (RSMI) hwloc/rsmi.h enables interoperability with the AMD ROCm SMI inter-
face. It may return the list of processors near an AMD GPU. It may also return the corre-
sponding OS device hwloc object for further information (if 1/O device discovery is enabled). See
Interoperability with the ROCm SMI Management Library.

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime
interfaces. For instance, it may return the list of processors near NVIDIA GPUs. It may also return the

Generated by Doxygen

56 Interoperability With Other Software

corresponding OS device hwloc object for further information (if I/O device discovery is enabled). See
Interoperability with the CUDA Driver API and Interoperability with the CUDA Runtime API.

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability with the NVIDIA NVML interface. It
may return the list of processors near a NVIDIA GPU given as a nvmlDevice_t. It may also return
the corresponding OS device hwloc object for further information (if I/O device discovery is enabled). See
Interoperability with the NVIDIA Management Library.

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL X extension
(NVCitrl library). If I/O device discovery is enabled, it may return the OS device hwloc object that cor-
responds to a display given as a name such as :0.0 or given as a port/device pair (server/screen). See
Interoperability with OpenGL displays.

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It manipulates
CPU set strings in a format that is slightly different from hwloc's one (it does not divide the string in fixed-
size subsets and separates them with commas). To ease interoperability, hwloc offers routines to convert
hwloc CPU sets from/to taskset-specific string format. See for instance hwloc_bitmap_taskset_snprintf() in
The bitmap API.

Most hwloc command-line tools also support the option ——cpuset-output-format taskset to ma-
nipulate taskset-specific strings.

Generated by Doxygen

Chapter 16

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a
hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate
on and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that
modify the same instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread
is reading or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance
concurrently.

When running in multiprocessor environments, be aware that proper thread synchronization and/or memory co-
herency protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another
(e.g., a mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth
mentioning.

For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init (), hwloc_topology_load (), hwloc_topology_destroy |
(see Topology Creation and Destruction) imply major modifications of the structure, including freeing some
objects. No other thread cannot access the topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object (),hwloc_topology_alloc_group_c
and hwloc_topology_insert_group_object () (see Modifying a loaded Topology) may modify
the topology significantly by adding objects inside the tree, changing the topology depth, etc.

hwloc_distances_add_commit () andhwloc_distances_remove () (see Add distances between objects)
modify the list of distance structures in the topology, and the former may even insert new Group objects.

hwloc_memattr_register () andhwloc_memattr_set_value () (see Managing memory attributes)
modify the memory attributes of the topology.

hwloc_topology_restrict () modifies the topology even more dramatically by removing some ob-
jects.

hwloc_topology_refresh () updates some internal cached structures. (see below).

Although references to former objects may still be valid after insertion or restriction, it is strongly advised to
not rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.

Consulting distances hwloc_distances_get () and its variants are thread-safe except if the topology was
recently modified (because distances may involve objects that were removed).

Whenever the topology is modified (see above), hwloc_topology_refresh () should be called
in the same thread-safe context to force the refresh of internal distances structures. A call to
hwloc_distances_get () may also refresh distances-related structures.

Once this refresh has been performed, multiple hwloc_distances_get () may then be performed con-
currently by multiple threads.

Consulting memory attributes Functions consulting memory attributes in hwloc/memattrs.h are thread-safe ex-
cept if the topology was recently modified (because memory attributes may involve objects that were re-
moved).

Whenever the topology is modified (see above), hwloc_topology_refresh () should be called in
the same thread-safe context to force the refresh of internal memory attribute structures. A call to

Generated by Doxygen

58 Thread Safety

hwloc_memattr_get_value () or hwloc_memattr_get_targets () may also refresh internal
structures for a given memory attribute.

Once this refresh has been performed, multiple functions consulting memory attributes may then be per-
formed concurrently by multiple threads.

Locating topologies hwloc_topology_set_x* (see Topology Detection Configuration and Query) do not
modify the topology directly, but they do modify internal structures describing the behavior of the upcoming
invocation of hwloc_topology_load (). Hence, all of these functions should not be used concurrently.

Generated by Doxygen

Chapter 17

Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology config-
uration, some components will be used (once enabled, they create a backend), some will be ignored.

The usual default is to enable the native operating system component, (e.g. 1inuxor solaris)andthe pci one.
If available, an architecture-specific component (such as x86) may also improve the topology detection. Finally,
some hardware-specific components (such as cuda or rsmi) may add information about GPUs, accelerators, etc.
If a XML topology is loaded, the xm1 discovery component will be used instead of all other components.

17.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not conflict
with the previously enabled ones. This includes native operating system components, architecture-specific ones,
and if available, /0 components such as pci.

Usually the native operating system component (when it exists, e.g. 1inux or aix) is enabled first. Then hwloc
looks for an architecture specific component (e.g. x86). Finally there also exist a basic component (no_os) that
just tries to discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native OS
components, do nothing unless the topology is still empty. Some others, such as x86 and pci, can complete and
annotate what other backends found earlier. Discovery is performed by phases: CPUs are first discovered, then
memory is attached, then PCI, etc.

Default priorities ensure that clever components are invoked first. Native operating system components have higher
priorities, and are therefore invoked first, because they likely offer very detailed topology information. If needed, it
will be later extended by architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set xml() is used before loading the topology, the correspond-
ing component is enabled first. Then, as usual, hwloc enables any other component (based on priorities) that does
not conflict.

Certain components that manage a virtual topology, for instance XML topology import or synthetic topol-
ogy description, conflict with all other components. Therefore, they may only be loaded (e.g. with
hwloc_topology_set_xml ()) if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about available
components (including their priority) and enabling as backends.

17.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_synthetic () have been called, com-
ponents may be selected with environment variables such as HWLOC_XMLFILE, HNLOC_SYNTHETIC, HWLOC+
_FSROOT, or HWLOC_CPUID_PATH (see Environment Variables).

Finally, the environment variable HWRLOC_COMPONENTS resets the list of selected components. If the variable is
set and empty (or set to a single comma separating nothing, since some operating systems do not accept empty
variables), the normal component priority order is used.

If the variable is set to x86 in this variable will cause the x86 component to take precedence over any other
component, including the native operating system component. It is therefore loaded first, before hwloc tries to load
all remaining non-conflicting components. In this case, x86 would take care of discovering everything it supports,

Generated by Doxygen

60 Components and plugins

instead of only completing what the native OS information. This may be useful if the native component is buggy on
some platforms.

It is possible to prevent some components from being loaded by prefixing their name with — in the list. For instance
%86, —pci will load the x86 component, then let hwloc load all the usual components except pci. A single
component phase may also be blacklisted, for instance with —1inux:io.

It is possible to prevent all remaining components from being loaded by placing st op in the environment variable.
Only the components listed before this keyword will be enabled.

hwloc_topology_set_components() may also be used inside the program to prevent the loading of a specific com-
ponent (or phases) for the target topology.

17.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend on
their dependencies (for instance the libpciaccess library). Plugin support may be enabled with the
—-—enable-plugins configure option. All components buildable as plugins will then be built as plugins.
The configure option may be given a comma-separated list of component names to specify the exact list of
components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $1ibdir/hwloc. All plugins found in this
directory are loaded during topology_init () (unless blacklisted in HWLOC_PLUGINS_BLACKLIST, see
Environment Variables). A specific list of directories (colon-separated) to scan may be specified in the HWLOC_ «+
PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core. Compo-
nents are then only enabled (as a backend) if the topology configuration requests it, as explained in the previous
sections.

Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see
Embedding hwloc in Other Software for details.

17.4 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available components may be listed at
running with the HRLOC_COMPONENTS_VERBOSE environment variable (see Environment Variables).

linux The official component for discovering CPU, memory and I/O devices on Linux. It discovers PCI devices
without the help of external libraries such as libpciaccess, but requires the pci component for adding ven-
dor/device names to PCI objects. It also discovers many kinds of Linux-specific OS devices.

aix, darwin, freebsd, hpux, netbsd, solaris, windows Each officially supported operating system has its own
native component, which is statically built when supported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the previously-
found CPU information. It is statically built when supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled by default
when —-host=powerpc64-bgg-1inux is passed to configure (see How do | build hwloc for BlueGene/Q?).

no_os A basic component that just tries to detect the number of processing units in the system. It mostly serves
on operating systems that are not natively supported. It is always statically built.

pci PCI object discovery uses the external libpciaccess library; see 1/0 Devices. It may also annotate existing PCI
devices with vendor and device names. It may be built as a plugin.

opencl The OpenCL component creates co-processor OS device objects such as opencl0do (first device of the
first OpenCL platform) or openci1d3 (fourth device of the second platform). Only the AMD and NVIDIA
OpenCL implementations currently offer locality information. It may be built as a plugin.

rsmi This component creates GPU OS device objects such as rsmi0 for describing AMD GPUs. It may be built
as a plugin.

levelzero This component creates co-processor OS device objects such as ze0 for describing oneAPI Level Zero
devices. It may also create sub-OS-devices such as ze0.0 inside those devices. It may be built as a plugin.

Generated by Doxygen

17.4 Existing components and plugins 61

cuda This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA GPUs
used with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as nvm/0 that are useful for batch
schedulers. It also detects the actual PCle link bandwidth without depending on power management state
and without requiring administrator privileges. It may be built as a plugin.

gl Probing the NV-CONTROL X extension (NVCirl library) creates OS device objects such as :0.0 corresponding
to NVIDIA displays. They are useful for graphical applications that need to place computation and/or data
near a rendering GPU. It may be built as a plugin.

synthetic Synthetic topology support (see Synthetic topologies) is always built statically.

xml XML topology import (see Importing and exporting topologies from/to XML files) is always built stati-
cally. It internally uses a specific class of components for the actual XML import/export routines (see
libxml2 and minimalistic XML backends for details).

» xml_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.
« xmli_libxml relies on the external libxml2 library for provinding a feature-complete XML import/export.
It may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated by Doxygen

62

Components and plugins

Generated by Doxygen

Chapter 18

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that
users don't have to separately download and install it before installing your software. This can be advantageous to
ensure that your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc
pre-installed.

When used in "embedded" mode, hwloc will:

+ not install any header files

not build any documentation files
 not build or install any executables or tests

* not build 1ibhwloc.* —instead, it will build 1ibhwloc_embedded. %

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

shell$./configure --enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your
software. If you do this, you can directly integrate hwloc's m4 configure macro into your configure script. You can
then invoke hwloc's configuration tests and build setup by calling a m4 macro (see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project will have to
manually setup dlopen or libltdl in its build system so that hwloc can load its plugins at run time. Also, embedders
should be aware of complications that can arise due to public and private linker namespaces (e.g., if the embedder
project is loaded into a private namespace and then hwloc tries to dynamically load its plugins, such loading may
fail since the hwloc plugins can't find the hwloc symbols they need). The embedder project is strongly advised not
to use hwloc's dynamically loading plugins / dlopen / libltdl capability.

18.1 Using hwloc's M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is one
example of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc's embedded m4
capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake 1.11.1, and Libtool
2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain
to not work.

You can either copy all the config/hwlocxm4 files from the hwloc source tree to the directory where your project's
m4 files reside, or you can tell aclocal to find more m4 files in the embedded hwloc's "config" subdirectory (e.g., add
"-lpath/to/embedded/hwloc/config" to your Makefile.am's ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be invoked
if using the m4 macros):

+ HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not)«
: Invoke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to
use for AC_OUTPUT files — it's where the hwloc tree is located relative to Stop_srcdir. Hence, if your

Generated by Doxygen

64 Embedding hwloc in Other Software

embedded hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as
the first argument. If HWLOC_SETUP_CORE and the rest of configure completes successfully, then
"make" traversals of the hwloc tree with standard Automake targets (all, clean, install, etc.) should behave
as expected. For example, it is safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am.
The last argument, if not empty, will cause the macro to display an announcement banner that it is starting
the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_«
EMBEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags
are filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as
relevant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_«
embedded) itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTs
it) to contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your
build process to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_:—
SETUP_CORE.

+ HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded" mode
(described above). If HWLOC_BUILD_STANDALONE is invoked xbeforex HWLOC_SETUP_CORE, the em-
bedded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc_embedded.la).

+ HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc's types and public symbols
with "foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an
upper-case translation if the prefix supplied; HWLOC_OBJ_CORE becomes FOO_hwloc_OBJ_CORE. This
is recommended behavior if you are including hwloc in middleware — it is possible that your software will be
combined with other software that links to another copy of hwloc. If both uses of hwloc utilize different symbol
prefixes, there will be no type/symbol clashes, and everything will compile, link, and run successfully. If you
both embed hwloc without changing the symbol prefix and also link against an external hwloc, you may get
multiple symbol definitions when linking your final library or application.

+ HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only ap-
ply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked unless HWLOC_BUILD_«
STANDALONE has already been invoked).

 HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with Au-
tomake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWLOC
_DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected to
be built). This macro is necessary because hwloc uses some AM_CONDITIONALSs to build itself, and AM«
_CONDITIONALSs cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLOC+«
_DO_AM_CONDITIONALS even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using
Automake to build hwloc, this macro is unnecessary (and will actually cause errors because it invoked AM_x
macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_«
CANONICAL_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS
macros early in the configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf doc-
umentation for further information.

Also note that hwloc's top-level configure.ac script uses exactly the macros described above to build hwloc in a
standalone mode (by default). You may want to examine it for one example of how these macros are used.

18.2 Example Embedding hwloc

Here's an example of integrating with a larger project named sandbox that already uses Autoconf, Automake, and
Libtool to build itself:

First, cd into the sandbox project source tree

shell$ cd sandbox

shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am

Generated by Doxygen

18.2 Example Embedding hwloc 65

1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS

2. Add "my-embedded-hwloc" to SUBDIRS

3. Add "$ (HWLOC_EMBEDDED_LDADD)" and "$ (HWLOC_EMBEDDED_LIBS)" to
sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter

is any dependent support libraries that may be needed by
$ (HWLOC_EMBEDDED_LDADD) .
4. Add "$ (HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$ (HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX (sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE ([my—-embedded-hwloc],
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>

2. Add calls to sandbox_hwloc_init () and other hwloc API functions

[happy=yes], [happy=no])" line

Now you can bootstrap, configure, build, and run the sandbox as normal — all calls to "sandbox_hwloc_x*" will use
the embedded hwloc rather than any system-provided copy of hwloc.

Generated by Doxygen

66

Embedding hwloc in Other Software

Generated by Doxygen

Chapter 19

Frequently Asked Questions (FAQ)

19.1 Concepts

19.1.1 | only need binding, or the number of cores, why should | use hwloc ?

hwloc is its portable API that works on a variety of operating systems. It supports binding of threads, processes
and memory buffers (see CPU binding and Memory binding). Even if some features are not supported on some
systems, using hwloc is much easier than reimplementing your own portability layer.

Moreover, hwloc provides knowledge of cores and hardware threads. It offers easy ways to bind tasks to individual
hardware threads, or to entire multithreaded cores, etc. See How may | ignore symmetric multithreading, hyper-threading, etc. in hwlo
Most alternative software for binding do not even know whether each core is single-threaded, multithreaded or
hyper-threaded. They would bind to individual threads without any way to know whether multiple tasks are in the
same physical core.

However, using hwloc comes with an overhead since a topology must be loaded before gathering information
and binding tasks or memory. Fortunately this overhead may be significantly reduced by filtering non-interesting
information out of the topology, see What may | disable to make hwloc faster? below.

19.1.2 What may | disable to make hwloc faster?

Building a hwloc topology on a large machine may be slow because the discovery of hundreds of hardware cores or
threads takes time (especially when reading thousands of sysfs files on Linux). Ignoring some objects (for instance
caches) that aren't useful to the current application may improve this overhead. One should also consider using
XML (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process) to work
around such issues.

Contrary to Istopo which enables most features (see Why is Istopo slow?), the default hwloc configuration is to keep
all objects enabled except I/0Os and instruction caches. This usually builds a very precise view of the CPU and
memory subsystems, which may be reduced if some information is unneeded.

The following code tells hwloc to build a much smaller topology that only contains Cores (explicitly filtered-in below),
hardware threads (PUs, cannot be filtered-out), NUMA nodes (cannot be filtered-out), and the root object (usually a
Machine; the root cannot be removed without breaking the tree):

hwloc_topology_t topology;

hwloc_topology_init (&topology) ;

/* filter everything out */

hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_NONE) ;

/+ filter Cores back in */

hwloc_topology_set_type_filter (topology, HWLOC_OBJ_CORE, HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);

However, one should remember that filtering such objects out removes locality information from the hwloc tree. For
instance, we may not know anymore which PU is close to which NUMA node. This would be useful to applications
that explicitly want to place specific memory buffers close to specific tasks. To ignore useless objects but keep
those that bring locality/hierarchy information, applications may replace HWLOC_TYPE_FILTER_KEEP_NONE with
HWLOC_TYPE_FILTER_KEEP_STRUCTURE above.

Starting with hwloc 2.8, it is also possible to ignore distances between objects, memory performance attributes, and

Generated by Doxygen

68 Frequently Asked Questions (FAQ)

kinds of CPU cores, by setting topology flags before load:

[...]
/+ disable distances, memory attributes and CPU kinds x/
hwloc_topology_set_flags (topology, HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

| HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

| HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS) ;
[...]
hwloc_topology_load(topology) ;

Finally it is possible to prevent some hwloc components from being loaded and queried. If you are sure that
the Linux (or x86) component is enough to discover everything you need, you may ask hwloc to disable all
other components by setting something like HWLOC_COMPONENTS=1inux, stop in the environment. See
Components and plugins for details.

19.1.3 Should I use logical or physical/OS indexes? and how?

One of the original reasons why hwloc was created is that physical/OS indexes (obj—->o0s_1index) are often
crazy and unpredictable: processors numbers are usually non-contiguous (processors 0 and 1 are not physically
close), they vary from one machine to another, and may even change after a BIOS or system update. These
numbers make task placement hardly portable. Moreover some objects have no physical/OS numbers (caches),
and some objects have non-unique numbers (core numbers are only unique within a socket). Physical/OS indexes
are only guaranteed to exist and be unique for PU and NUMA nodes.

hwloc therefore introduces logical indexes (obj->1ogical_index) which are portable, contiguous and log-
ically ordered (based on the resource organization in the locality tree). In general, one should only use logical
indexes and just let hwloc do the internal conversion when really needed (when talking to the OS and hardware).
hwloc developers recommends that users do not use physical/OS indexes unless they really know what they are
doing. The main reason for still using physical/OS indexes is when interacting with non-hwloc tools such as numactl
or taskset, or when reading hardware information from raw sources such as /proc/cpuinfo.

Istopo options —1 and —p may be used to switch between logical indexes (prefixed with L#) and physical/OS indexes
(P#). Converting one into the other may also be achieved with hwloc-calc which may manipulate either logical or
physical indexes as input or output. See also hwloc-calc.

Convert PU with physical number 3 into logical number
$ hwloc-calc -I pu --physical-input --logical-output pu:3

Convert a set of NUMA nodes from logical to physical

(beware that the output order may not match the input order)

$ hwloc-calc -I numa —--logical-input --physical-output numa:2-3 numa:7
0,2,5

19.1.4 hwloc is only a structural model, it ignores performance models, memory
bandwidth, etc.?

hwloc is indeed designed to provide applications with a structural model of the platform. This is an orthogonal
approach to describing the machine with performance models, for instance using memory bandwidth or latencies
measured by benchmarks. We believe that both approaches are important for helping application make the most of
the hardware.

For instance, on a dual-processor host with four cores each, hwloc clearly shows which four cores are together.
Latencies between all pairs of cores of the same processor are likely identical, and also likely lower than the latency
between cores of different processors. However, the structural model cannot guarantee such implementation details.
On the other side, performance models would reveal such details without always clearly identifying which cores are
in the same processor.

The focus of hwloc is mainly of the structural modeling side. However, hwloc lets user adds performance information
to the topology through distances (see Distances), memory attributes (see Memory Attributes) or even custom an-
notations (see How do | annotate the topology with private notes?). hwloc may also use such distance information
for grouping objects together (see hwloc only has a one-dimensional view of the architecture, it ignores distances?
and What are these Group objects in my topology?).

Generated by Doxygen

19.1 Concepts 69

19.1.5 hwloc only has a one-dimensional view of the architecture, it ignores distances?

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the
same object (siblings) are assumed to be equally interconnected (same distance between any of them), while the
distance between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual
physical distances between objects. The hwloc topology may therefore be annotated with distance information that
may be used to build a more realistic representation (multi-dimensional) of each level. For instance, there can be
a distance matrix that representing the latencies between any pair of NUMA nodes if the BIOS and/or operating
system reports them.

For more information about the hwloc distances, see Distances.

19.1.6 What are these Group objects in my topology?

hwloc comes with a set of predefined object types (Core, Package, NUMA node, Caches) that match the vast
majority of hardware platforms. The HWLOC_OBJ_GROUP type was designed for cases where this set is not
sufficient. Groups may be used anywhere to add more structure information to the topology, for instance to show
that 2 out of 4 NUMA nodes are actually closer than the others. When applicable, the subtype field describes
why a Group was actually added (see also Normal attributes).

hwloc currently uses Groups for the following reasons:

* NUMA parents when memory locality does not match any existing object.

I/0 parents when I/O locality does not match any existing object.

Distance-based groups made of close objects.

* AMD Core Complex (CCX) (subtype is Complex, in the x86 backend), but these objects are usually
merged with the L3 caches or Dies.

» AMD Bulldozer dual-core compute units (subtype is ComputeUnit, in the x86 backend), but these ob-
jects are usually merged with the L2 caches.

Intel Extended Topology Enumeration levels such as Module and Tile (in the x86 and Windows backends).

» Windows processor groups when HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=1 is set in the envi-
ronment (except if they contain exactly a single NUMA node, or a single Package, etc.).

IBM S/390 "Books" on Linux (subtype is Book).

Linux Clusters of CPUs (subtype is Cluster), for instance for ARM cores sharing of some internal cache
or bus, or x86 cores sharing a L2 cache (since Linux kernel 5.16). HWLOC_DONT_MERGE_CLUSTER_«
GROUPS=1 may be set in the environment to disable the automerging of these groups with identical caches,
etc.

» AlIX unknown hierarchy levels.

hwloc Groups are only kept if no other object has the same locality information. It means that a Group containing
a single child is merged into that child. And a Group is merged into its parent if it is its only child. For instance a
Windows processor group containing a single NUMA node would be merged with that NUMA node since it already
contains the relevant hierarchy information.

When inserting a custom Group with hwloc_hwloc_topology_insert_group_object(), this merging may be disabled
by setting its dont_merge attribute.

19.1.7 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there could be
different types of processors in a single machine, each with different numbers of cores, symmetric multithreading,
or levels of caches.

In practice, asymmetric topologies are rare but occur for at least two reasons:

* Intermediate groups may added for I/O affinity: on a 4-package machine, an I/O bus may be connected to 2
packages. These packages are below an additional Group object, while the other packages are not (see also
What are these Group objects in my topology?).

Generated by Doxygen

70 Frequently Asked Questions (FAQ)

« If only part of a node is available to the current process, for instance because the resource manager uses
Linux Cgroups to restrict process resources, some cores (or NUMA nodes) will disappear from the topology
(unless flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was passed). On a 32-core machine
where 12 cores were allocated to the process, this may lead to one CPU package with 8 cores, another one
with only 4 cores, and two missing packages.

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects.
All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through
the cousin pointers of the hwloc_obj structure. Object attribute (cache depth and type, group depth) are also taken
in account when gathering objects as horizontal levels. To be clear: there will be one level for L1i caches, another
level for L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a group is missing above some processors), a given horizontal level will still
exist if there exist any objects of that type. However, some branches of the overall tree may not have an object
located in that horizontal level. Note that this specific hole within one horizontal level does not imply anything for
other levels. All objects of the same type are gathered in horizontal levels even if their parents or children have
different depths and types.

See the diagram in Terms and Definitions for a graphical representation of such topologies.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore,
different depths). These children are therefore siblings (because they have the same parent), but they are
not cousins (because they do not belong to the same horizontal level).

19.1.8 What happens to my topology if | disable symmetric multithreading,
hyper-threading, etc. in the system?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multi-
threading, for instance Hyper-Threading, each Core object may contain multiple PU objects:

$ lstopo —

Core L#0
PU L#0 (P#0)
PU L#1 (P#2)
Core L#1
PU L#2 (P#1)
PU L#3 (P#3)

x86 machines usually offer the ability to disable hyper-threading in the BIOS. Or it can be disabled on the Linux
kernel command-line at boot time, or later by writing in sysfs virtual files.

If you do so, the hwloc topology structure does not significantly change, but some PU objects will not appear
anymore. No level will disappear, you will see the same number of Core objects, but each of them will contain a
single PU now. The PU level does not disappear either (remember that hwloc topologies always contain a PU level
at the bottom of the topology) even if there is a single PU object per Core parent.

$ lstopo -

Core L#0

PU L#0 (P#0)
Core L#1

PU L#1 (P#1)

19.1.9 How may | ighore symmetric multithreading, hyper-threading, etc. in hwloc?

First, see What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the system?
for more information about multithreading.

If you need to ignore symmetric multithreading in software, you should likely manipulate hwloc Core objects
directly:

/* get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_CORE) ;

/* get the third core below the first package «*/

hwloc_obj_t package, core;

package = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PACKAGE, O0);

core = hwloc_get_obj_inside_cpuset_by_type (topology, package->cpuset,
HWLOC_OBJ_CORE, 2);

Generated by Doxygen

19.2 Advanced 71

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is
actually bound to a single thread within this core (to avoid useless migrations).

/+ bind on the second core */

hwloc_obj_t core = hwloc_get_obj_by_type (topology, HWLOC_OBJ_CORE, 1);

hwloc_cpuset_t set = hwloc_bitmap_dup (core->cpuset) ;

hwloc_bitmap_singlify (set);

hwloc_set_cpubind (topology, set, 0);

hwloc_bitmap_free (set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each
core by asking for their first PU object:

$ hwloc-calc core:4-7

0x0000££00

$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask
hwloc-bind to singlify the cpuset before binding

$ hwloc-bind core:3.pu:0 -- echo "hello from first thread on core #3"
hello from first thread on core #3

$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3

19.2 Advanced

19.2.1 1do not want hwloc to rediscover my enormous machine topology every time |
rerun a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when
multiple processes repeat the discovery on large machines (for instance when starting one process per core in a
parallel application). The machine topology usually does not vary much, except if some cores are stopped/restarted
or if the administrator restrictions are modified. Thus rediscovering the whole topology again and again may look
useless.

For this purpose, hwloc offers XML import/export and shared memory features.

XML lets you save the discovered topology to a file (for instance with the Istopo program) and reload it later by setting
the HWLOC_XMLFILE environment variable. The HWLOC_THISSYSTEM environment variable should also be set
to 1 to assert that loaded file is really the underlying system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the
operating system. It is also possible to manipulate such XML files with the C programming interface, and the
import/export may also be directed to memory buffer (that may for instance be transmitted between applications
through a package). See also Importing and exporting topologies from/to XML files.

Note

The environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES may be used to load a XML
topology that contains the entire machine and restrict it to the part that is actually available to the current pro-
cess (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources). See Environment Variables.

Shared-memory topologies consist in one process exposing its topology in a shared-memory buffer so that other
processes (running on the same machine) may use it directly. This has the advantage of reducing the memory foot-
print since a single topology is stored in physical memory for multiple processes. However, it requires all processes
to map this shared-memory buffer at the same virtual address, which may be difficult in some cases. This APl is
described in Sharing topologies between processes.

19.2.2 How many topologies may | use in my program?

hwloc lets you manipulate multiple topologies at the same time. However, these topologies consume memory and

system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged to open the

same topology multiple times.

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses are

read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to avoid memory waste when man

Generated by Doxygen

72 Frequently Asked Questions (FAQ)

19.2.3 How to avoid memory waste when manipulating multiple similar topologies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory, for
instance the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or unapply them,
or export/import to/from XML. However, this feature is limited to basic differences such as attribute changes. It does
not support complex modifications such as adding or removing some objects.

19.2.4 How do | annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private point-
ers. This field is only valid during the lifetime of these container object and topology. It becomes in-
valid as soon the topology is destroyed, or as soon as the object disappears, for instance when restrict-
ing the topology. The userdata field is not exported/imported to/from XML by default since hwloc does
not know what it contains. This behavior may be changed by specifying application-specific callbacks with
hwloc_topology_set_userdata_export_callback () andhwloc_topology_set_userdata_import_callk
Each object may also contain some info attributes (name and value strings) that are setup by hwloc during discovery
and that may be extended by the user with hwloc_obj_add_info () (see also Object attributes). Contrary to
the userdata field which is unique, multiple info attributes may exist for each object, even with the same name.
These attributes are always exported to XML. However, only character strings may be used as names and values.
It is also possible to insert Misc objects with a custom name anywhere as a leaf of the topology (see
Miscellaneous objects). And Misc objects may have their own userdata and info attributes just like any other
object.

The hwloc-annotate command-line tool may be used for adding Misc objects and info attributes.

There is also a topology-specific userdata pointer that can be used to recognize different topologies by
storing a custom pointer. It may be manipulated with hwloc_topology_set_userdata () and
hwloc_topology_get_userdatal().

19.2.5 How do | create a custom heterogeneous and asymmetric topology?

Synthetic topologies (see Synthetic topologies) allow to create custom topologies but they are always symmetric:
same numbers of cores in each package, same local NUMA nodes, same shared cache, etc. To create an asym-
metric topology, for instance to simulate hybrid CPUs, one may want to start from a larger symmetric topology and
restrict it.

Assuming we want two packages, one with 4 dual-threaded cores, and one with 8 single-threaded cores, first we
create a topology with two identical packages, each with 8 dual-threaded cores:

$ lstopo -i "pack:2 core:8 pu:2" topo.xml

Then create the bitmask representing the PUs that we wish to keep and pass it to Istopo's restrict option:
$ hwloc-calc -i topo.xml pack:0.core:0-3.pu:0-1 pack:1l.core:0-7.pu:0

0x555500ff

$ lstopo -1 topo.xml —--restrict 0x555500ff topo2.xml
$ mv -f topo2.xml topo.xml

To mark the cores of first package as Big (power hungry) and those of second package as Little (energy efficient),
define CPU kinds:

$ hwloc-annotate topo.xml topo.xml -- none -- cpukind $(hwloc-calc -i topo.xml pack:0) 1 0 CoreType Big
$ hwloc-annotate topo.xml topo.xml -- none -- cpukind $(hwloc-calc -i topo.xml pack:1) 0 0 CoreType Little

A similar method may be used for heterogeneous memory. First we specify 2 NUMA nodes per package in our
synthetic description:

$ lstopo —-1i "pack:2 [numa (memory=100GB)] [numa (memory=10GB)] core:8 pu:2" topo.xml

Then remove the second node of first package:

Generated by Doxygen

19.3 Caveats 73

$ hwloc-calc -i topo.xml --nodeset node:all ~pack:0.node:1l
0x0000000e
$ lstopo -1 topo.xml —--restrict nodeset=0xe topo2.xml

$ mv -f topo2.xml topo.xml
Then make one large node even bigger:

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 -- size 200GB

Now we have 200GB in first package, and 100GB+10GB in second package.

Next we may specify that the small NUMA node (second of second package) is HBM while the large ones are
DRAM:

$ hwloc-annotate topo.xml topo.xml —- pack:0.numa:0 pack:1l.numa:0 —-- subtype DRAM
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:1l -- subtype HBM

Finally we may define memory performance attributes to specify that the HBM bandwidth (200GB/s) from local cores
is higher than the DRAM bandwidth (50GB/s):

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 —-- memattr Bandwidth pack:0 50000
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:0 -- memattr Bandwidth pack:1 50000
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:l -- memattr Bandwidth pack:1 200000

There is currently no way to create or modify I/O devices attached to such fake topologies. There is also no way to
have some partial levels, e.g. a L3 cache in one package but not in the other.

More changes may obviously be performed by manually modifying the XML export file. Simple operations such as
modifying object attributes (cache size, memory size, name-value info attributes, etc.), moving I/O subtrees, moving
Misc objects, or removing objects are easy to perform.

However, modifying CPU and Memory objects requires care since cpusets and nodesets are supposed to remain
consistent between parents and children. Similarly, PCI bus IDs should remain consistent between bridges and
children within an 1/O subtree.

19.3 Caveats

19.3.1 Why is Istopo slow?

Istopo enables most hwloc objects and discovery flags by default so that the output topology is as precise as possible
(while hwloc disables many of them by default). This includes 1/O device discovery through PCI libraries as well
as external libraries such as NVML. To speed up Istopo, you may disable such features with command-line options
such as ——no-io.

When NVIDIA GPU probing is enabled (e.g. with CUDA or NVML), one may enable the Persistent mode (with
nvidia-smi -pm 1) to avoid significant GPU wakeup and initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious round-
trips on the network may significantly increase the discovery time. Forcing the DISPLAY environment variable to
the remote X server display (usually : 0) instead of only setting the COMPUTE variable may avoid this.

Also remember that these hwloc components may be disabled. At build-time, one may pass configure
flags such as —-disable-opencl, ——disable-cuda, ——disable-nvml, —-disable-rsmi, and
—--disable-levelzero. Atruntime, one may set the environment variable HWLOC_COMPONENTS=-opencl, —cuda, —nvml
or call hwloc_topology_set_components().

Remember that these backends are disabled by default, except in Istopo. If hwloc itself is still too slow even after
disabling all the 1/0O devices as explained above, see also What may | disable to make hwloc faster? for disabling
even more features.

19.3.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access
to the operation system. For instance memory module discovery on Linux is reserved to root, and the entire PCI

Generated by Doxygen

74 Frequently Asked Questions (FAQ)

discovery on Solaris and BSDs requires access to some special files that are usually restricted to root (/dev/pci* or
/devices/pcix).

To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator
(with the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML files).
It will offer all discovery information to any application without requiring any privileged access anymore. Only the
necessary hardware characteristics will be exported, no sensitive information will be disclosed through this XML
export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is
usually much faster than querying the operating system again.

The utility hwloc—-dump-hwdata is also involved in gathering privileged information at boot time and making it
available to non-privileged users (note that this may require a specific SELinux MLS policy module). However, it only
applies to Intel Xeon Phi processors for now (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?).
See also HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.3.3 What should | do when hwloc reports "operating system" warnings?

When the operating system reports invalid locality information (because of either software or hardware bugs),
hwloc may fail to insert some objects in the topology because they cannot fit in the already built tree of
resources. If so, hwloc will report a warning like the following. The object causing this error is ignored,
the discovery continues but the resulting topology will miss some objects and may be asymmetric (see also
What happens if my topology is asymmetric?).

B R

hwloc received invalid information from the operating system.

L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!
Error occurred in topology.c line 940

along with the files generated by the hwloc-gather-topology script.

hwloc will now ignore this invalid topology information and continue.

*

*

*

*

*

* Please report this error message to the hwloc user’s mailing list,

*

*

*

R R R R R R kS S S S S S S S

These errors are common on large AMD platforms because of BIOS and/or Linux kernel bugs causing invalid L3
cache information. In the above example, the hardware reports a L3 cache that is shared by 2 cores in the first
NUMA node and 4 cores in the second NUMA node. That's wrong, it should actually be shared by all 6 cores in a
single NUMA node. The resulting topology will miss some L3 caches.

If your application does not care about cache sharing, or if you do not plan to request cache-aware binding in
your process launcher, you may likely ignore this error (and hide it by setting HWLOC_HIDE_ERRORS=1 in your
environment).

Some platforms report similar warnings about conflicting Packages and NUMANodes.

On x86 hosts, passing HWLOC_COMPONENTS=x86 in the environment may workaround some of these issues by
switching to a different way to discover the topology.

Upgrading the BIOS and/or the operating system may help. Otherwise, as explained in the message, reporting this
issue to the hwloc developers (by sending the tarball that is generated by the hwloc-gather-topology script on this
platform) is a good way to make sure that this is a software (operating system) or hardware bug (BIOS, etc).

See also Questions and Bugs. Opening an issue on GitHub automatically displays hints on what information you
should provide when reporting such bugs.

19.3.4 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc
and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However, some global variables
in hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it
so that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether
it can safely ask libxml2 to free it (the application may also be using libxmI2 outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide them.
You should pass the following command-line option to Valgrind to use it:

--suppressions=/path/to/hwloc-valgrind.supp

Generated by Doxygen

19.4 Platform-specific 75

19.4 Platform-specific

19.4.1 How do | enable ROCm SMI and select which version to use?

hwloc enables ROCm SMI as soon as it finds its development headers and libraries on the system.

This detection consists in looking in /opt/rocm by default. If a ROCm version was specified with
——with-rocm-version=4.4.0 orinthe ROCM_VERSION environment variable, then /opt /rocm-<version>
is used instead. Finally, a specific installation path may be specified with ——with-rocm=/path/to/rocmn.

As usual, developer header and library paths may also be set through environment variables such as LIBRARY+«+
_PATHand C_INCLUDE_PATH.

To find out whether ROCm SMI was detected and enabled, look in Probe / display I/O devices at the end of the
configure script output. Passing ——enable-rsmi will also cause configure to fail if RSMI could not be found and
enabled in hwloc.

19.4.2 How do | enable CUDA and select which CUDA version to use?

hwloc enables CUDA as soon as it finds CUDA development headers and libraries on the system. This detection
may be performed thanks to pkg—config but it requires hwloc to know which CUDA version to look for. This may
be done by passing ——with-cuda-version=11.0 to the configure script. Otherwise hwloc will also look for
the CUDA_VERSION environment variable.

If pkg—config does not work, passing ——-with-cuda=/path/to/cuda to the configure script is another
way to define the corresponding library and header paths. Finally, these paths may also be set through environment
variables such as LIBRARY_PATH and C_INCLUDE_PATH.

These paths, either detected by pkg—config or given manually, will also be used to detect NVML and OpenCL
libraries and enable their hwloc backends.

To find out whether CUDA was detected and enabled, look in Probe / display I/O devices at the end of the configure
script output. Passing ——enable-cuda will also cause configure to fail if CUDA could not be found and enabled
in hwloc.

Note that -——with—-cuda=/nonexisting may be used to disable all dependencies that are installed by CUDA,
i.e. the CUDA, NVML and NVIDIA OpenCL backends, since the given directory does not exist.

19.4.3 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor?

Intel Xeon Phi processors introduced a new memory architecture by possibly having two distinct local memories«
some normal memory (DDR) and some high-bandwidth on-package memory (MCDRAM). Processors can
be configured in various clustering modes to have up to 4 Clusters. Moreover, each Cluster (quarter, half or
whole processor) of the processor may have its own local parts of the DDR and of the MCDRAM. This mem-
ory and clustering configuration may be probed by looking at MemoryMode and ClusterMode attributes, see
Hardware Platform Information and doc/examples/get-knl-modes.c in the source directory.
Starting with version 2.0, hwloc properly exposes this memory configuration. DDR and MCDRAM are attached as
two memory children of the same parent, DDR first, and MCDRAM second if any. Depending on the processor
configuration, that parent may be a Package, a Cache, or a Group object of type Cluster.
Hence cores may have one or two local NUMA nodes, listed by the core nodeset. An application may allocate local
memory from a core by using that nodeset. The operating system will actually allocate from the DDR when possible,
or fallback to the MCDRAM.
To allocate specifically on one of these memories, one should walk up the parent pointers until finding an object with
some memory children. Looking at these memory children will give the DDR first, then the MCDRAM if any. Their
nodeset may then be used for allocating or binding memory buffers.
One may also traverse the list of NUMA nodes until finding some whose cpuset matches the target core or PUs.
The MCDRAM NUMA nodes may be identified thanks to the subt ype field which is set to MCDRAM.
Command-line tools such as hwloc-bind may bind memory on the MCDRAM by using the hbm keyword. For
instance, to bind on the first MCDRAM NUMA node:

$ hwloc-bind --membind --hbm numa:0 -- myprogram
$ hwloc-bind —--membind numa:0 -- myprogram

19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?

Intel Xeon Phi processors may use the on-package memory (MCDRAM) as either memory or a memory-side cache
(reported as a L3 cache by hwloc by default, see HWLOC_KNL_MSCACHE_L3 in Environment Variables). There

Generated by Doxygen

76 Frequently Asked Questions (FAQ)

are also several clustering modes that significantly affect the memory organization (see How do | find the local MCDRAM NUMA node
for more information about these modes). Details about these are currently only available to privileged users. With-

out them, hwloc relies on a heuristic for guessing the modes.

The hwloc-dump-hwdata utility may be used to dump this privileged binary information into human-readable and
world-accessible files that the hwloc library will later load. The utility should usually run as root once during boot,

in order to update dumped information (stored under /var/run/hwloc by default) in case the MCDRAM or clustering

configuration changed between reboots.

When SELinux MLS policy is enabled, a specific hwloc policy module may be required so that all users get access to
the dumped files (in /var/run/hwloc by default). One may use hwloc policy files from the SELinux Reference Policy at
https://github.com/TresysTechnology/refpolicy—-contrib (see also the documentation at

https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted).
hwloc-dump-hwdata requires dmi-sysfs kernel module loaded.

The utility is currently unneeded on platforms without Intel Xeon Phi processors.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.4.5 How do | build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the login/frontend nodes and a custom CNK (Compute Node
Kernel) on the compute nodes.

To discover the topology of a login/frontend node, hwloc should be configured as usual, without any BlueGene/Q-
specific option.

However, one would likely rather discover the topology of the compute nodes where parallel jobs are actually run-
ning. If so, hwloc must be cross-compiled with the following configuration line:

./configure --host=powerpc64-bgg-linux —--disable-shared —--enable-static \
CPPFLAGS='-I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

19.4.6 How do | build hwloc for Windows?

hwloc binary releases for Windows are available on the website download pages (as pre-built ZIPs for both
32bits and 64bits x86 platforms). However hwloc also offers several ways to build on Windows:

» The usual Unix build steps (configure, make and make install) work on the MSYS2/MinGW envi-
ronment on Windows (the official hwloc binary releases are built this way). Some environment variables and
options must be configured, see contrib/ci.inria.fr/job-3-mingw. sh in the hwloc repository
for an example (used for nightly testing).

+ hwloc also supports such Unix-like builds in Cygwin (environment for porting Unix code to Windows).
» Windows build is also possible with CMake (CMakeLists.txt available under contrib/windows-cmake/).

» hwloc also comes with an example of Microsoft Visual Studio solution (under contrib/windows/)
that may serve as a base for custom builds.

19.4.7 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component). This
implementation requires CPU binding so as to query topology information from each individual processor. This
means that hwloc cannot find any useful topology information unless user-level process binding is allowed by the
NetBSD kernel. The security.models.extensions.user_set_cpu_affinity sysctl variable must
be set to 1 to do so. Otherwise, only the number of processors will be detected.

19.4.8 Why does binding fail on AIX?

The AIX operating system requires specific user capabilities for attaching processes to resource sets (CAP_«
NUMA_ATTACH). Otherwise functions such as hwloc_set_cpubind() fail (return -1 with errno set to EPERM).

This capability must also be inherited (through the additional CAP_PROPAGATE capability) if you plan to bind a
process before forking another process, for instance with hwloc-bind.

These capabilities may be given by the administrator with:

chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" <username>

Generated by Doxygen

https://github.com/TresysTechnology/refpolicy-contrib
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted

19.5 Compatibility between hwloc versions 77

19.5 Compatibility between hwloc versions

19.5.1 How do | handle API changes?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be
prepared to check at compile-time whether some features are available in the currently installed hwloc distribution.
For instance, to check whether the hwloc version is at least 2.0, you should use:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000

fendif
To check for the API of release X.Y.Z at build time, you may compare HWLOC_API_VERSION with
(X<<16) +(Y<<L8) +7Z.

For supporting older releases that do not have HWLOC_OBJ_NUMANODE and HWLOC_OBJ_PACKAGE yet, you
may use:

#include <hwloc.h>

#1if HWLOC_API_VERSION < 0x00010b00

#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
#endif

Once a program is built against a hwloc library, it may also dynamically link with compatible libraries from other
hwloc releases. The version of that runtime library may be queried with hwloc_get_api_version(). For instance, the
following code enables the topology flag HWLOC_TOPOLOGY_FLAG_NO_DISTANCES when compiling on hwloc
2.8 or later, but it disables it at runtime if running on an older hwloc (otherwise hwloc_topology_set_flags() would
fail).

unsigned long topology_flags = ...; /x wanted flags that were supported before 2.8 x/
#1if HWLOC_API_VERSION >= 0x20800
if (hwloc_get_api_version() >= 0x20800)
topology_flags |= HWLOC_TOPOLOGY_FLAG_NO_DISTANCES; /+ wanted flags only supported in 2.8+ x/
#endif
hwloc_topology_set_flags (topology, topology_flags);

See also How do | handle ABI breaks? for using hwloc_get_api_version() for testing ABI compatibility.

19.5.2 What is the difference between API and library version numbers?

HWLOC_API_VERSION is the version of the API. It changes when functions are added, modified, etc. However it
does not necessarily change from one release to another. For instance, two releases of the same series (e.g. 2.0.3
and 2.0.4) usually have the same HWLOC_API_VERSION (0x00020000). However their HWLOC_VERSION
strings are different ("2.0.3" and "2.0. 4" respectively).

19.5.3 How do | handle ABI breaks?

The hwloc interface was deeply modified in release 2.0 to fix several issues of the 1.x interface (see
Upgrading to the hwloc 2.0 API and the NEWS file in the source directory for details). The ABI was broken,
which means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library, check the major revision
number in the API version:

#include <hwloc.h>
unsigned version = hwloc_get_api_version();
if ((version >> 16) != (HWLOC_API_VERSION >> 16)) {
fprintf (stderr,
"$s compiled for hwloc API 0x%x but running on library API Ox%x.\n"
"You may need to point LD_LIBRARY_PATH to the right hwloc library.\n"
"Aborting since the new ABI is not backward compatible.\n",
callname, HWLOC_API_VERSION, version);
exit (EXIT_FAILURE) ;
}

To specifically detect v2.0 issues:

Generated by Doxygen

78 Frequently Asked Questions (FAQ)

#include <hwloc.h>
#1f HWLOC_API_VERSION >= 0x00020000
/* headers are recent =/
if (hwloc_get_api_version() < 0x20000)
. error out, the hwloc runtime library is older than 2.0 ...
#else
/* headers are pre-2.0 x/
if (hwloc_get_api_version() >= 0x20000)
. error out, the hwloc runtime library is more recent than 2.0 ...
#endif

In theory, library sonames prevent linking with incompatible libraries. However custom hwloc installations or improp-
erly configured build environments may still lead to such issues. Hence running one of the above (cheap) checks
before initializing hwloc topology may be useful.

19.5.4 Are XML topology files compatible between hwloc releases?

XML topology files are forward-compatible: a XML file may be loaded by a hwloc library that is more recent than the
hwloc release that exported that file.

However, hwloc XMLs are not always backward-compatible: Topologies exported by hwloc 2.x cannot be imported
by 1.x by default (see XML changes for working around such issues). There are also some corner cases where
backward compatibility is not guaranteed because of changes between major releases (for instance 1.11 XMLs
could not be imported in 1.10).

XMLs are exchanged at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (cluster-wide) hwloc installation is a
good way to avoid such incompatibilities.

19.5.5 Are synthetic strings compatible between hwloc releases?

Synthetic strings (see Synthetic topologies) are forward-compatible: a synthetic string generated by a release may
be imported by future hwloc libraries.

However they are often not backward-compatible because new details may have been added to synthetic descrip-
tions in recent releases. Some flags may be given to hwloc_topology_export_synthetic() to avoid such details and
stay backward compatible.

19.5.6 Is it possible to share a shared-memory topology between different hwloc
releases?

Shared-memory topologies (see Sharing topologies between processes) have strong requirements on compatibility
between hwloc libraries. Adopting a shared-memory topology fails if it was exported by a non-compatible hwloc
release. Releases with same major revision are usually compatible (e.g. hwloc 2.0.4 may adopt a topology exported
by 2.0.3) but different major revisions may be incompatible (e.g. hwloc 2.1.0 cannot adopt from 2.0.x).

Topologies are shared at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (system-wide) hwloc installation is a
good way to avoid such incompatibilities.

Generated by Doxygen

Chapter 20

Upgrading to the hwloc 2.0 API

See Compatibility between hwloc versions for detecting the hwloc version that you are compiling and/or running
against.

20.1 New Organization of NUMA nodes and Memory

20.1.1 Memory children

In hwloc v1.x, NUMA nodes were inside the tree, for instance Packages contained 2 NUMA nodes which contained
a L3 and several cache.

Starting with hwloc v2.0, NUMA nodes are not in the main tree anymore. They are attached under objects as
Memory Children on the side of normal children. This memory children list starts at obj—>memory_first_«
child and its size is obj—>memory_arity. Hence there can now exist two local NUMA nodes, for instance
on Intel Xeon Phi processors.

The normal list of children (starting at obj->first_child, ending at obj->last_child, of size
obj->arity, and available as the array obj—>children) now only contains CPU-side objects: PUs,
Cores, Packages, Caches, Groups, Machine and System. hwloc_get_next_child() may still be used to iterate over
all children of all lists.

Hence the CPU-side hierarchy is built using normal children, while memory is attached to that hierarchy depending
on its affinity.

20.1.2 Examples

* a UMA machine with 2 packages and a single NUMA node is now modeled as a "Machine" object with two
"Package" children and one "NUMANode" memory children (displayed first in Istopo below):

Machine (1024MB total)
NUMANode L#0 (P#0 1024MB)
Package L#0

Core L#0 + PU L#0 (P#0)

Core L#1 + PU L#1 (P#1)
Package L#1

Core L#2 + PU L#2 (P#2)

Core L#3 + PU L#3 (P#3)

+ a machine with 2 packages with one NUMA node and 2 cores in each is now:

Machine (2048MB total)
Package L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#l + PU L#l1 (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

« if there are two NUMA nodes per package, a Group object may be added to keep cores together with their
local NUMA node:

Generated by Doxygen

80 Upgrading to the hwloc 2.0 API

Machine (4096MB total)
Package L#0
GroupO L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
GroupO L#l
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1l
[...]

« if the platform has L3 caches whose localities are identical to NUMA nodes, Groups aren't needed:

Machine (4096MB total)
Package L#0
L3 L#0 (16MB)
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
L3 L#1 (16MB)
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

20.1.3 NUMA level and depth

NUMA nodes are not in "main" tree of normal objects anymore. Hence, they don't have a meaningful depth anymore
(like I/0O and Misc objects). They have a virtual (negative) depth (HWLOC_TYPE_DEPTH_NUMANODE) so that
functions manipulating depths and level still work, and so that we can still iterate over the level of NUMA nodes just
like for any other level.

For instance we can still use lines such as

int depth = hwloc_get_type_depth (topology, HWLOC_OBJ_NUMANODE) ;
hwloc_obj_t obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, 4);
hwloc_obj_t node = hwloc_get_next_obj_by_depth (topology, HWLOC_TYPE_DEPTH_NUMANODE, prev);

The NUMA depth should not be compared with others. An unmodified code that still compares NUMA and Package
depths (to find out whether Packages contain NUMA or the contrary) would now always assume Packages contain
NUMA (because the NUMA depth is negative).

However, the depth of the Normal parents of NUMA nodes may be used instead. In the last example above, NUMA
nodes are attached to L3 caches, hence one may compare the depth of Packages and L3 to find out that NUMA
nodes are contained in Packages. This depth of parents may be retrieved with hwloc_get._memory_parents_depth().
However, this function may return HWLOC_TYPE_DEPTH_MULTIPLE on future platforms if NUMA nodes are at-
tached to different levels.

20.1.4 Finding Local NUMA nodes and looking at Children and Parents

Applications that walked up/down to find NUMANode parent/children must now be updated. Instead of looking
directly for a NUMA node, one should now look for an object that has some memory children. NUMA node(s) will
be attached there. For instance, when looking for a NUMA node above a given core core:

hwloc_obj_t parent = core->parent;
while (parent && !parent->memory_arity)
parent = parent->parent; /% no memory child, walk up */
if (parent)
/* use parent->memory_first_child (and its siblings if there are multiple local NUMA nodes) =/

The list of local NUMA nodes (usually a single one) is also described by the nodeset attribute of each object
(which contains the physical indexes of these nodes). lterating over the NUMA level is also an easy way to find local
NUMA nodes:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, HWLOC_OBJ_NUMANODE, tmp)) != NULL) {

Generated by Doxygen

20.2 4 Kinds of Objects and Children 81

if (hwloc_bitmap_isset (obj->nodeset, tmp->os_index))
/* tmp is a NUMA node local to obj, use it */
}

Similarly finding objects that are close to a given NUMA nodes should be updated too. Instead of looking at the
NUMA node parents/children, one should now find a Normal parent above that NUMA node, and then look at its
parents/children as usual:
hwloc_obj_t tmp = obj->parent;
while (hwloc_obj_type_is_memory (tmp))

tmp = tmp->parent;
/* now use tmp instead of obj */

To avoid such hwloc v2.x-specific and NUMA-specific cases in the code, a generic lookup for any kind of object,
including NUMA nodes, might also be implemented by iterating over a level. For instance finding an object of type
type which either contains or is included in object obj can be performed by traversing the level of that type and
comparing CPU sets:
hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, type, tmp)) != NULL) {

if (hwloc_bitmap_intersects (tmp->cpuset, obj->cpuset))

/* tmp matches, use it x/

}

This generic lookup works whenever type or obj are Normal or Memory objects since both have CPU
sets. Moreover, it is compatible with the hwloc v1.x APL.

20.2 4 Kinds of Objects and Children

20.2.1 1/0 and Misc children

I/O children are not in the main object children list anymore either. They are in the list starting at obj->io_+«
first_childandits sizeis obj—>io_arity

Misc children are not in the main object children list anymore. They are in the list starting at obj—>misc_«+
first_childandits sizeis obj—>misc_arity.

See hwloc_obj for details about children lists.

hwloc_get_next_child() may still be used to iterate over all children of all lists.

20.2.2 Kinds of objects

Given the above, objects may now be of 4 kinds:

» Normal (everything not listed below, including Machine, Package, Core, PU, CPU Caches, etc);
* Memory (currently NUMA nodes or Memory-side Caches), attached to parents as Memory children;
« 1/O (Bridges, PCI and OS devices), attached to parents as I/O children;

» Misc objects, attached to parents as Misc children.

See hwloc_obj for details about children lists.

For a given object type, the kind may be found with hwloc_obj_type_is_normal(), hwloc_obj_type_is_memory(),
hwloc_obj_type_is_normal(), or comparing with HWLOC_OBJ_MISC.

Normal and Memory objects have (non-NULL) CPU sets and nodesets, while /0 and Misc objects don't have any
sets (they are NULL).

20.3 HWLOC_OBJ_CACHE replaced

Instead of a single HWLOC_OBJ_CACHE, there are now 8 types HWLOC_OBJ_L1CACHE, ..., HWLOC_OBJ_L5CACHE,
HWLOC_OBJ_L1ICACHE, ..., HWLOC_OBJ_L3ICACHE.

Cache object attributes are unchanged.

hwloc_get_cache_type_depth() is not needed to disambiguate cache types anymore since new types can be passed

to hwloc_get_type_depth() without ever getting HWLOC_TYPE_DEPTH_MULTIPLE anymore.
hwloc_obj_type_is_cache(), hwloc_obj_type_is_dcache() and hwloc_obj_type_is_icache() may be used to check
whether a given type is a cache, data/unified cache or instruction cache.

Generated by Doxygen

82 Upgrading to the hwloc 2.0 API

20.4 allowed_cpuset and allowed_nodeset only in the main topology

Objects do not have allowed_cpuset and allowed_nodeset anymore. They are only available for the
entire topology using hwloc_topology_get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset().

As usual, those are only needed when the INCLUDE_DISALLOWED topology flag is given, which means disallowed
objects are kept in the topology. If so, one may find out whether some PUs inside an object is allowed by checking

hwloc_bitmap_intersects (obj->cpuset, hwloc_topology_get_allowed_cpuset (topology))

Replace cpusets with nodesets for NUMA nodes. To find out which ones, replace intersects() with and() to get the
actual intersection.

20.5 Object depths are now signed int

obj->depth as well as depths given to functions such as hwloc_get _obj by depth() or returned by
hwloc_topology_get_depth() are now signed int.
Other depth such as cache-specific depth attribute are still unsigned.

20.6 Memory attributes become NUMANode-specific

Memory attributes such as obj->memory.local_memory are now only available in NUMANode-specific at-
tributes in obj->attr->numanode.local_memory.

obj->memory.total_memory is available in all objects as obj->total_memory.

See hwloc_obj_attr_u::hwloc_numanode_attr_s and hwloc_obj for details.

20.7 Topology configuration changes

The old ignoring APl as well as several configuration flags are replaced with the new filtering API, see
hwloc_topology_set_type_filter() and its variants, and hwloc_type_filter_e for details.

» hwloc_topology_ignore_type(), hwloc_topology_ignore_type_ keep_structure() and hwloc_topology_ignore«—
_all_keep_structure() are respectively superseded by

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_NONE) ;

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;
hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;

Also, the meaning of KEEP_STRUCTURE has changed (only entire levels may be ignored, instead of single
objects), the old behavior is not available anymore.

+ HWLOC_TOPOLOGY_FLAG_ICACHES is superseded by

hwloc_topology_set_icache_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL);

« HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC _TOPOLOGY_FLAG_IO_DEVICES and HWLOC +«+
TOPOLOGY_FLAG_IO_BRIDGES replaced.

To keep all I/O devices (PCI, Bridges, and OS devices), use:

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL) ;

To only keep important devices (Bridges with children, common PCI devices and OS devices):

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_IMPORTANT) ;

Generated by Doxygen

20.8 XML changes 83

20.8 XML changes

2.0 XML files are not compatible with 1.x

2.0 can load 1.x files, but only NUMA distances are imported. Other distance matrices are ignored (they were never
used by default anyway).

2.0 can export 1.x-compatible files, but only distances attached to the root object are exported (i.e. distances that
cover the entire machine). Other distance matrices are dropped (they were never used by default anyway).

Users are advised to negociate hwloc versions between exporter and importer: If the importer isn't 2.x, the
exporter should export to 1.x. Otherwise, things should work by default.

Hence hwloc_topology_export_xml() and hwloc_topology_export_xmlbuffer() have a new flags argument. to force
a hwloc-1.x-compatible XML export.

« If both always support 2.0, don't pass any flag.

* When the importer uses hwloc 1.x, export with HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1. Otherwise
the importer will fail to import.

* When the exporter uses hwloc 1.x, it cannot pass any flag, and a 2.0 importer can import without problem.

#if HWLOC_API_VERSION >= 0x20000
if (need 1.x compatible XML export)

hwloc_topology_export_xml(...., HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1);
else /x need 2.x compatible XML export =/
hwloc_topology_export_xml(...., 0);
#else
hwloc_topology_export_xml(....);
#endif

Additionally, hwloc_topology_diff_load_xml(), hwloc_topology_diff_load_xmlbuffer(), hwloc_topology_diff_export_xml(),
hwloc_topology_diff_export_xmlbuffer() and hwloc_topology_diff_destroy() lost the topology argument: The first
argument (topology) isn't needed anymore.

20.9 Distances API totally rewritten

The new distances API is in hwloc/distances.h.

Distances are not accessible directly from objects anymore. One should first call hwloc_distances_get() (or a
variant) to retrieve distances (possibly with one call to get the number of available distances structures, and another
call to actually get them). Then it may consult these structures, and finally release them.

The set of object involved in a distances structure is specified by an array of objects, it may not always cover the
entire machine or so.

20.10 Return values of functions

Bitmap functions (and a couple other functions) can return errors (in theory).

Most bitmap functions may have to reallocate the internal bitmap storage. In v1.x, they would silently crash if realloc
failed. In v2.0, they now return an int that can be negative on error. However, the preallocated storage is 512 bits,
hence realloc will not even be used unless you run hwloc on machines with larger PU or NUMAnode indexes.
hwloc_obj_add_info(), hwloc_cpuset_from_nodeset() and hwloc_cpuset_from_nodeset() also return an int, which
would be -1 in case of allocation errors.

20.11 Misc API changes

» hwloc_type_sscanf() extends hwloc_obj_type_sscanf() by passing a union hwloc_obj_attr_u which may re-
ceive Cache, Group, Bridge or OS device attributes.

» hwloc_type_sscanf_as_depth() is also added to directly return the corresponding level depth within a topol-
ogy.

» hwloc_topology_insert_misc_object_by_cpuset() is replaced with hwloc_topology_alloc_group_object() and
hwloc_topology_insert_group_object().

+ hwloc_topology_insert_misc_object_by_parent() is replaced with hwloc_topology_insert_misc_object().

Generated by Doxygen

84

Upgrading to the hwloc 2.0 API

20.12 API removals and deprecations

HWLOC_OBJ_SYSTEM removed: The root object is always HWLOC_OBJ_MACHINE

_membind_nodeset() memory binding interfaces deprecated: One should use the variant without _nodeset
suffix and pass the HWLOC_MEMBIND_BYNODESET flag.

HWLOC_MEMBIND_REPLICATE removed: no supported operating system supports it anymore.

hwloc_obj_snprintf() removed because it was long-deprecated by hwloc_obj type_snprintf() and
hwloc_obj_attr_snprintf().

hwloc_obj_type_sscanf() deprecated, hwloc_obj_type_of_string() removed.

hwloc_cpuset_from/to_nodeset_strict() deprecated: Now useless since all topologies are NUMA. Use the
variant without the _strict suffix

hwloc_distribute() and hwloc_distributev() removed, deprecated by hwloc_distrib().

The Custom interface (hwloc_topology_set custom(), etc.) was removed, as well as the corresponding
command-line tools (hwloc-assembler, etc.). Topologies always start with object with valid cpusets and node-
sets.

obj->online_cpuset removed: Offline PUs are simply listed in the complete_cpuset as previ-
ously.

obj->os_level removed.

Generated by Doxygen

Chapter 21

Topic Index

21.1 Topics

Here is a list of all topics with brief descriptions:

Error reporting inthe APl L e 89
APLversion L e e 89
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) 90
Object TYPeS o o e 91
Object Structure and Attributes L 95
Topology Creation and Destruction e 95
Object levels, depths and types e 97
Converting between Object Types and Attributes, and Strings 102
Consulting and Adding Info Attributes L 103
CPUDINDING e 105
Memory binding e e e e e e 109
Changing the Source of Topology Discovery it e 116
Topology Detection Configurationand Query 119
Modifying a loaded Topology e e e 127
Kinds of object Type 132
Finding Objectsinsidea CPUset e 134
Finding Objects covering atleast CPUset 137
Looking at Ancestor and Child Objects e 139
Looking at Cache Objects e 141
Finding objects, miscellaneous helpers o 142
Distributing items over atopology e 144
CPU and node sets of entire topologies 145
Converting between CPU setsandnode sets 148
Finding /O objects 148
The bitmap APl 150
Exporting Topologiesto XML 162
Exporting Topologies to Synthetic e 166
Retrieve distances between objectso 167
Helpers for consulting distance matrices L 171
Add distances between objects L 172
Remove distances betweenobjects L 174
Comparing memory node attributes for finding where to allocateon 175
Managing memory attributes L 183
Kindsof CPU cores e e 185
Linux-specific helpers 187
Interoperability with Linux libnuma unsigned longmaskso oL 188
Interoperability with Linux libnuma bitmask oo 190
Windows-specific helpers e 191
Interoperability with glibc sched affinity oo 192
Interoperability with OpenCL 193

Generated by Doxygen

86 Topic Index
Interoperability with the CUDA Driver APl 195
Interoperability with the CUDA Runtime APl 196
Interoperability with the NVIDIA Management Library 198
Interoperability with the ROCm SMI Management Library 199
Interoperability with the oneAPI Level Zerointerface. 200
Interoperability with OpenGL displays 202
Interoperability with OpenFabrics 203
Topology differences L 205
Sharing topologies between processes L e 209
Components and Plugins: Discovery components and backends 211
Components and Plugins: Genericcomponents 212
Components and Plugins: Core functions to be used by components 213
Components and Plugins: Filtering objects L 215
Components and Plugins: helpers for PCl discovery 216
Components and Plugins: finding PCI objects during other discoveries 218
Components and Plugins: distances 218

Generated by Doxygen

Chapter 22

Data Structure Index

22.1 Data Structures

Here are the data structures with brief descriptions:
hwloc_backend

Discovery backend structure e 221
hwloc_obj_attr_u::hwloc_bridge_attr_s

Bridge specific Object Attributes L 222
hwloc_obj_attr_u::hwloc_cache_attr_s

Cache-specific Object Attributes 223
hwloc_cl_device_pci_bus_info_khr 224
hwloc_cl_device_topology_amd e e e e 225
hwloc_component

Generic component structure L L 225
hwloc_disc_component

Discovery component structure L 227
hwloc _disc_status

Discovery status structure 228
hwloc_distances_s

Matrix of distances between asetofobjects oL, 228
hwloc_obj_attr_u::hwloc_group_attr_s

Group-specific Object Attributes L 229
hwloc_info_s

Object info attribute (name and value strings) L . 230
hwloc_location

Where to measure attributes fromo 230
hwloc_location::hwloc_location_u

Actual location 231
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_typesis0 231
hwloc_obj_attr_u::hwloc_numanode_attr_s

NUMA node-specific Object Attributeso 232
hwloc_obj

Structure of atopology object L 233
hwloc_obj_attr_u

Object type-specific Attributes 238
hwloc_obj_attr_u::hwloc_osdev_attr_s

OS Device specific Object Attributes 238
hwloc_obj_attr_u::hwloc_pcidev_attr_s

PCI Device specific Object Attributeso 239
hwloc_topology_cpubind_support

Flags describing actual PU binding support for this topology 240
hwloc_topology_diff_u::hwloc_topology_diff_generic.s, 242
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr generic.s 242

Generated by Doxygen

Data Structure Index

hwloc_topology_diff_u::hwloc_topology diff obj_attr s 242
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optionalname oL 243
hwloc_topology_diff_obj_attr_u

One object attribute difference L 244
hwloc_topology_diff obj_attr_u::hwloc_topology_diff obj_attr_uint64_s

Integer attribute modification with an optionalindex 244
hwloc_topology_diff_u::hwloc_topology diff_too_complex_s 245
hwloc_topology_diff u

One element of a difference list between two topologies 246
hwloc_topology_discovery_support

Flags describing actual discovery support for this topology 246
hwloc_topology_membind_support

Flags describing actual memory binding support for this topology 247
hwloc_topology_misc_support

Flags describing miscellaneous features oo 249
hwloc_topology_support

Set of flags describing actual support for thistopology 249

Generated by Doxygen

Chapter 23

Topic Documentation

23.1 Error reporting in the API

Most functions in the hwloc API return an integer value. Unless documentated differently, they return 0 on success
and -1 on error. Functions that return a pointer type return NULL on error.

errno will be set to a meaningful value whenever possible. This includes the usual EINVAL when invalid function
parameters are passed or ENOMEM when an internal allocation fails. Some specific errno value are also used, for
instance for binding errors as documented in CPU binding.

Some modules describe return values of their functions in their introduction, for instance in The bitmap API.

23.2 API version

Macros

+ #define HWLOC_API_VERSION 0x00020c00
* #define HWLOC_COMPONENT_ABI 7

Functions

+ unsigned hwloc_get_api_version (void)

23.2.1 Detailed Description

23.2.2 Macro Definition Documentation
23.2.2.1 HWLOC_API_VERSION

#define HWLOC_API_VERSION 0x00020c00

Indicate at build time which hwloc API version is being used.

This number is updated to (X< <16)+(Y<<8)+Z when a new release X.Y.Z actually modifies the API.

Users may check for available features at build time using this number (see How do | handle API changes?).

Note

This should not be confused with HWLOC_VERSION, the library version. Two stable releases of the same
series usually have the same HWLOC_API_VERSION even if their HWLOC_VERSION are different.

23.2.2.2 HWLOC_COMPONENT_ABI

#define HWLOC_COMPONENT_ABI 7
Current component and plugin ABI version (see hwloc/plugins.h)

Generated by Doxygen

90 Topic Documentation

23.2.3 Function Documentation
23.2.3.1 hwloc_get_api_version()

unsigned hwloc_get_api_version (

void)
Indicate at runtime which hwloc API version was used at build time.
Should be HWLOC_API_VERSION if running on the same version.

Returns

the build-time version number.

23.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

« typedef hwloc_bitmap_t hwloc_cpuset_t

« typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
« typedef hwloc_bitmap_t hwloc_nodeset_t

« typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

23.3.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets
(hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all
the hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are
the same (e.g., enable and disable individual items in the set/mask), they're used in very different contexts: one for
specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference
is really just to reflect the intent of where the type is used.

23.3.2 Typedef Documentation
23.3.2.1 hwloc_const_cpuset_t

typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
A non-modifiable hwloc_cpuset_t.

23.3.2.2 hwloc_const_nodeset_t

typedef hwloc_const_bitmap_t hwloc_const_nodeset_t
A non-modifiable hwloc_nodeset_t.

23.3.2.3 hwloc_cpuset_t

typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).
Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

23.3.2.4 hwloc_nodeset_t

typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may
be converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

When binding memory on a system without any NUMA node, the single main memory bank is considered as NUMA
node #0.

See also Converting between CPU sets and node sets.

Generated by Doxygen

23.4 Object Types 91

23.4 Object Types

Macros

+ #define HWLOC_TYPE_UNORDERED

Typedefs

» typedef enum hwloc_obj_cache_type e hwloc_obj_cache_type t
 typedef enum hwloc_obj_bridge_type e hwloc_obj_bridge_type_t
 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type t

Enumerations

» enum hwloc_obj_type_t {
HWLOC_OBJ_MACHINE , HWLOC_OBJ_PACKAGE , HWLOC_OBJ_CORE , HWLOC_OBJ_PU ,
HWLOC_OBJ_L1CACHE , HWLOC_OBJ_L2CACHE , HWLOC_OBJ_L3CACHE , HWLOC_OBJ_L4CACHE

HWLOC_OBJ_L5CACHE , HWLOC_OBJ_L1ICACHE , HWLOC_OBJ_L2ICACHE , HWLOC_OBJ_L3ICACHE
HWLOC_OBJ_GROUP , HWLOC_OBJ_NUMANODE , HWLOC_OBJ_BRIDGE , HWLOC_OBJ_PCI_DEVICE

HWLOC_OBJ_OS_DEVICE , HWLOC_OBJ_MISC , HWLOC_OBJ_MEMCACHE , HWLOC_OBJ_DIE,
HWLOC_OBJ_TYPE_MAX }

» enum hwloc_obj_cache_type_e { HWLOC_OBJ_CACHE_UNIFIED , HWLOC_OBJ_CACHE_DATA ,
HWLOC_OBJ_CACHE_INSTRUCTION }

+ enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST , HWLOC_OBJ_BRIDGE_PCI }

» enum hwloc_obj_osdev_type_e {
HWLOC_OBJ_OSDEV_BLOCK , HWLOC_OBJ_OSDEV_GPU , HWLOC_OBJ_OSDEV_NETWORK
HWLOC_OBJ_OSDEV_OPENFABRICS,
HWLOC_OBJ_OSDEV_DMA , HWLOC_OBJ_OSDEV_COPROC }

Functions

« int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

23.4.1 Detailed Description
23.4.2 Macro Definition Documentation
23.4.2.1 HWLOC_TYPE_UNORDERED

#define HWLOC_TYPE_UNORDERED
Value returned by hwloc_compare_types() when types can not be compared.

23.4.3 Typedef Documentation

23.4.3.1 hwloc_obj_bridge_type_t

typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
Type of one side (upstream or downstream) of an 1/O bridge.

23.4.3.2 hwloc_obj_cache_type_t

typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
Cache type.

23.4.3.3 hwloc_obj_osdev_type_t

typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t
Type of a OS device.

Generated by Doxygen

92 Topic Documentation

23.4.4 Enumeration Type Documentation
23.4.4.1 hwloc_obj_bridge_type_e

enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an 1/O bridge.
Enumerator

HWLOC_OBJ_BRIDGE_HOST | Host-side of a bridge, only possible upstream.
HWLOC_OBJ_BRIDGE_PCI | PCl-side of a bridge.

23.4.4.2 hwloc_obj_cache_type_e

enum hwloc_obj_cache_type_e

Cache type.

Enumerator

HWLOC_OBJ_CACHE_UNIFIED | Unified cache.
HWLOC_OBJ_CACHE_DATA | Data cache.
HWLOC_OBJ_CACHE_INSTRUCTION | Instruction cache (filtered out by default).

23.4.4.3 hwloc_obj_osdev_type_e

enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator

HWLOC_OBJ_OSDEV_BLOCK | Operating system block device, or non-volatile memory device. For
instance "sda" or "dax2.0" on Linux.

HWLOC_OBJ_OSDEV_GPU | Operating system GPU device. For instance ":0.0" for a GL display,
"card0" for a Linux DRM device.
HWLOC_OBJ_OSDEV_NETWORK | Operating system network device. For instance the "eth0" interface
on Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS | Operating system openfabrics device. For instance the "mix4_0"
InfiniBand HCA, "hfi1_0" Omni-Path interface, or "bxi0" Atos/Bull
BXI HCA on Linux.

HWLOC_OBJ_OSDEV_DMA | Operating system dma engine device. For instance the
"dmaOchan0" DMA channel on Linux.
HWLOC_OBJ_OSDEV_COPROC | Operating system co-processor device. For instance "opencl0d0"
for a OpenCL device, "cuda0" for a CUDA device.

23.4.4.4 hwloc_obj_type_t

enum hwloc_obj_type_t
Type of topology object.

Note

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If you
need to compare types, use hwloc_compare_types() instead.

Generated by Doxygen

23.4 Object Types

93

Enumerator

HWLOC_OBJ_MACHINE

Machine. A set of processors and memory with cache coherency. This type is
always used for the root object of a topology, and never used anywhere else.
Hence its parent is always NULL.

HWLOC_OBJ_PACKAGE

Physical package. The physical package that usually gets inserted into a
socket on the motherboard. A processor package usually contains multiple
cores, and possibly some dies.

HWLOC_OBJ_CORE

Core. A computation unit (may be shared by several PUs, aka logical
processors).

HWLOC_OBJ_PU

Processing Unit, or (Logical) Processor. An execution unit (may share a core
with some other logical processors, e.g. in the case of an SMT core). This is
the smallest object representing CPU resources, it cannot have any child
except Misc objects.

Objects of this kind are always reported and can thus be used as fallback
when others are not.

HWLOC_OBJ_L1CACHE

Level 1 Data (or Unified) Cache.

HWLOC_OBJ_L2CACHE

HWLOC_OBJ_L3CACHE

Level 3 Data (or Unified) Cache.

HWLOC_OBJ_L4CACHE

)

Level 2 Data (or Unified) Cache.
)
)

Level 4 Data (or Unified) Cache.

HWLOC_OBJ_L5CACHE

Level 5 Data (or Unified) Cache.

HWLOC_OBJ_L1ICACHE

Level 1 instruction Cache (filtered out by default).

HWLOC_OBJ_L2ICACHE

Level 2 instruction Cache (filtered out by default).

HWLOC_OBJ_L3ICACHE

Level 3 instruction Cache (filtered out by default).

HWLOC_OBJ_GROUP

Group objects. Objects which do not fit in the above but are detected by hwloc
and are useful to take into account for affinity. For instance, some operating
systems expose their arbitrary processors aggregation this way. And hwloc
may insert such objects to group NUMA nodes according to their distances.
See also What are these Group objects in my topology?. These objects are
removed when they do not bring any structure (see
HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

HWLOC_OBJ_NUMANODE

NUMA node. An object that contains memory that is directly and
byte-accessible to the host processors. It is usually close to some cores (the
corresponding objects are descendants of the NUMA node object in the hwloc
tree). This is the smallest object representing Memory resources, it cannot
have any child except Misc objects. However it may have Memory-side cache
parents.

NUMA nodes may correspond to different kinds of memory (DRAM, HBM,
CXL-DRAM, etc.). When hwloc is able to guess that kind, it is specified in the
subtype field of the object. See also Normal attributes in the main
documentation.

There is always at least one such object in the topology even if the machine is
not NUMA.

Memory objects are not listed in the main children list, but rather in the
dedicated Memory children list.

NUMA nodes have a special depth HWLOC_TYPE_DEPTH_NUMANODE
instead of a normal depth just like other objects in the main tree.

HWLOC_OBJ_BRIDGE

Bridge (filtered out by default). Any bridge (or PCI switch) that connects the
host or an 1/O bus, to another I/O bus. Bridges are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0O objects have NULL CPU and node sets.

Generated by Doxygen

94 Topic Documentation

Enumerator

HWLOC_OBJ_PCI_DEVICE | PCI device (filtered out by default). PCI devices are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0 objects have NULL CPU and node sets.

HWLOC_OBJ_OS_DEVICE | Operating system device (filtered out by default). OS devices are not added to
the topology unless their filtering is changed (see
hwloc_topology_set_type_filter() and hwloc_topology_set_io_types_filter()).
I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0O objects have NULL CPU and node sets.

HWLOC_OBJ_MISC | Miscellaneous objects (filtered out by default). Objects without particular
meaning, that can e.g. be added by the application for its own use, or by hwloc
for miscellaneous objects such as MemoryModule (DIMMs). They are not
added to the topology unless their filtering is changed (see
hwloc_topology_set_type._filter()).

These objects are not listed in the main children list, but rather in the dedicated
misc children list. Misc objects may only have Misc objects as children, and
those are in the dedicated misc children list as well. Misc objects have NULL
CPU and node sets.

HWLOC_OBJ_MEMCACHE | Memory-side cache (filtered out by default). A cache in front of a specific
NUMA node. This object always has at least one NUMA node as a memory
child.

Memory objects are not listed in the main children list, but rather in the
dedicated Memory children list.

Memory-side cache have a special depth
HWLOC_TYPE_DEPTH_MEMCACHE instead of a normal depth just like
other objects in the main tree.

HWLOC_OBJ_DIE | Die within a physical package. A subpart of the physical package, that contains
multiple cores. Some operating systems (e.g. Linux) may expose a single die
per package even if the hardware does not support dies at all. To avoid
showing such non-existing dies, hwloc will filter them out if all of them are
identical to packages. This is functionally equivalent to
HWLOC_TYPE_FILTER_KEEP_STRUCTURE being enforced for Dies versus
Packages.

23.4.5 Function Documentation
23.4.5.1 hwloc_compare_types()

int hwloc_compare_types (
hwloc_obij_type_t typel,
hwloc_obj_type_t type2)
Compare the depth of two object types.
Types shouldn't be compared as they are, since newer ones may be added in the future.

Returns

A negative integer if t ypel objects usually include t ype2 objects.
A positive integer if t ypel objects are usually included in t ype2 objects.
0if typel and type2 objects are the same.

HWLOC_TYPE_UNORDERED if objects cannot be compared (because neither is usually contained in the
other).

Generated by Doxygen

23.5 Object Structure and Attributes 95

Note

Object types containing CPUs can always be compared (usually, a machine contains packages, which contain
caches, which contain cores, which contain PUs).

HWLOC_OBJ_PU will always be the deepest, while HWLOC_OBJ_MACHINE is always the highest.

This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain
caches, and packages may also contain nodes. This is thus just to be seen as a fallback comparison method.

23.5 Object Structure and Attributes

Data Structures

« struct hwloc_obj
* union hwloc_obj_attr_u
« struct hwloc_info_s

Typedefs

* typedef struct hwloc_obj * hwloc_obj_t

23.5.1 Detailed Description

23.5.2 Typedef Documentation
23.5.2.1 hwloc_obj_t

typedef struct hwloc_obij*x hwloc_obj_t
Convenience typedef; a pointer to a struct hwloc_obj.

23.6 Topology Creation and Destruction

Typedefs

* typedef struct hwloc_topology * hwloc_topology_t

Functions

« int hwloc_topology_init (hwloc_topology_t xtopologyp)

« int hwloc_topology load (hwloc_topology_t topology)

« void hwloc_topology_destroy (hwloc_topology_t topology)

« int hwloc_topology_dup (hwloc_topology_t xnewtopology, hwloc_topology_t oldtopology)
« int hwloc_topology_abi_check (hwloc_topology_t topology)

« void hwloc_topology_check (hwloc_topology_t topology)

23.6.1 Detailed Description

23.6.2 Typedef Documentation
23.6.2.1 hwloc_topology_t

typedef struct hwloc_topology* hwloc_topology_t
Topology context.
To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

Generated by Doxygen

96 Topic Documentation

23.6.3 Function Documentation
23.6.3.1 hwloc_topology_abi_check()

int hwloc_topology_abi_check (

hwloc_topology_t topology)
Verify that the topology is compatible with the current hwloc library.
This is useful when using the same topology structure (in memory) in different libraries that may use different hwloc
installations (for instance if one library embeds a specific version of hwloc, while another library uses a default
system-wide hwloc installation).
If all libraries/programs use the same hwloc installation, this function always returns success.

Returns

0 on success.

-1 with errno set to EINVAL if incompatible.

Note

If sharing between processes with hwloc_shmem_topology write(), the relevant check is already performed
inside hwloc_shmem_topology_adopt().

23.6.3.2 hwloc_topology_check()

void hwloc_topology_check (
hwloc_topology_t topology)
Run internal checks on a topology structure.
The program aborts if an inconsistency is detected in the given topology.

Parameters

topology | is the topology to be checked

Note

This routine is only useful to developers.

The input topology should have been previously loaded with hwloc_topology_load().

23.6.3.3 hwloc_topology_destroy()

void hwloc_topology_destroy (
hwloc_topology_t topology)
Terminate and free a topology context.

Parameters

topology | is the topology to be freed ‘

23.6.3.4 hwloc_topology_dup()

int hwloc_topology_dup (
hwloc_topology_t * newtopology,
hwloc_topology_t oldtopology)
Duplicate a topology.
The entire topology structure as well as its objects are duplicated into a new one.
This is useful for keeping a backup while modifying a topology.

Generated by Doxygen

23.7 Object levels, depths and types 97

Returns

0 on success, -1 on error.

Note

Object userdata is not duplicated since hwloc does not know what it point to. The objects of both old and new
topologies will point to the same userdata.

23.6.3.5 hwloc_topology_init()

int hwloc_topology_init (
hwloc_topology_t * topologyp)
Allocate a topology context.

Parameters

‘ out ‘ topologyp | is assigned a pointer to the new allocated context.

Returns

0 on success, -1 on error.

23.6.3.6 hwloc_topology load()

int hwloc_topology_load (
hwloc_topology_t topology)
Build the actual topology.
Build the actual topology once initialized with hwloc_topology_init() and tuned with Topology Detection Configuration and Query
and Changing the Source of Topology Discovery routines. No other routine may be called earlier using this topology
context.

Parameters

topology | is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

Note
On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy() or config-
ured and loaded again.
This function may be called only once per topology.
The binding of the current thread or process may temporarily change during this call but it will be restored
before it returns.

See also

Topology Detection Configuration and Query and Changing the Source of Topology Discovery

23.7 Object levels, depths and types

Enumerations

» enum hwloc_get_type_depth_e {
HWLOC_TYPE_DEPTH_UNKNOWN , HWLOC_TYPE_DEPTH_MULTIPLE , HWLOC_TYPE_DEPTH_NUMANODE

Generated by Doxygen

98 Topic Documentation

, HWLOC_TYPE_DEPTH_BRIDGE,
HWLOC_TYPE_DEPTH_PCI_DEVICE ,HWLOC_TYPE_DEPTH_OS_DEVICE , HWLOC_TYPE_DEPTH_MISC
, HWLOC_TYPE_DEPTH_MEMCACHE }

Functions

« int hwloc_topology_get_depth (hwloc_topology_t restrict topology)

« int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_memory_parents_depth (hwloc_topology_t topology)

« int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)

« unsigned hwloc_get_nbobjs_by depth (hwloc_topology_t topology, int depth)

« int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology)

» hwloc_obj_t hwloc_get_obj_by depth (hwloc_topology_t topology, int depth, unsigned idx)

» hwloc_obj_t hwloc_get_obj_by type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx)

» hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_by type (hwloc_topology_t topology, hwloc_obj_type_t type, hwloc_obj_t
prev)

23.7.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

23.7.2 Enumeration Type Documentation

23.7.2.1 hwloc_get_type_depth_e

enum hwloc_get_type_depth_e

Enumerator

HWLOC_TYPE_DEPTH_UNKNOWN | No object of given type exists in the topology.
HWLOC_TYPE_DEPTH_MULTIPLE | Objects of given type exist at different depth in the topology (only for

Groups).

HWLOC_TYPE_DEPTH_NUMANODE | Virtual depth for NUMA nodes.

HWLOC_TYPE_DEPTH_BRIDGE | Virtual depth for bridge object level.
HWLOC_TYPE_DEPTH_PCI_DEVICE | Virtual depth for PCI device object level.
HWLOC_TYPE_DEPTH_OS_DEVICE | Virtual depth for software device object level.

HWLOC_TYPE_DEPTH_MISC | Virtual depth for Misc object.
HWLOC_TYPE_DEPTH_MEMCACHE | Virtual depth for MemCache object.

23.7.3 Function Documentation
23.7.3.1 hwloc_get_depth_type()

hwloc_obj_type_t hwloc_get_depth_type (
hwloc_topology_t topology,
int depth)
Returns the type of objects at depth depth.
depth should between 0 and hwloc_topology_get_depth()-1, or a virtual depth such as HWLOC_TYPE_DEPTH_NUMANODE.

Generated by Doxygen

23.7 Object levels, depths and types 99

Returns

The type of objects at depth depth.
(hwloc_obj_type_t)-1 if depth depth does not exist.

23.7.3.2 hwloc_get_memory_parents_depth()

int hwloc_get_memory_parents_depth (

hwloc_topology_t topology)
Return the depth of parents where memory objects are attached.
Memory objects have virtual negative depths because they are not part of the main CPU-side hierarchy of objects.
This depth should not be compared with other level depths.
If all Memory objects are attached to Normal parents at the same depth, this parent depth may be compared to
other as usual, for instance for knowing whether NUMA nodes is attached above or below Packages.

Returns
The depth of Normal parents of all memory children if all these parents have the same depth. For instance
the depth of the Package level if all NUMA nodes are attached to Package objects.

HWLOC_TYPE_DEPTH_MULTIPLE if Normal parents of all memory children do not have the same depth.
For instance if some NUMA nodes are attached to Packages while others are attached to Groups.

23.7.3.3 hwloc_get_nbobjs_by depth()

unsigned hwloc_get_nbobjs_by_depth (
hwloc_topology_t topology,
int depth)

Returns the width of level at depth depth.

Returns

The number of objects at topology depth depth.
0 if there are no objects at depth depth.

23.7.3.4 hwloc_get_nbobjs_by_type()

int hwloc_get_nbobjs_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the width of level type type.

Returns

The number of objects of type type.
-1 if there are multiple levels with objects of that type, e.g. HWLOC_OBJ_GROUP.
0 if there are no objects at depth depth.

23.7.3.5 hwloc_get_next_obj_by_depth()

hwloc_obj_t hwloc_get_next_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obj_t prev) [inline]

Returns the next object at depth depth.

Returns
The first object at depth depth if prev is NULL.

The object after prev at depth depth if prev is not NULL.
NULL if there is no such object.

Generated by Doxygen

100 Topic Documentation

23.7.3.6 hwloc_get_next_obj_by_type()

hwloc_obj_t hwloc_get_next_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]

Returns the next object of type type.
Returns

The first object of type type if prev is NULL.
The object after prev of type type if prev is not NULL.
NULL if there is no such object.

NULL if there are multiple levels with objects of that type (e.g. HWLOC_OBJ_GROUP), the caller may fallback
to hwloc_get_obj_by_depth().

23.7.3.7 hwloc_get_obj_by_depth()

hwloc_obj_t hwloc_get_obj_by_depth (
hwloc_topology_t topology,
int depth,
unsigned idx)

Returns the topology object at logical index idx from depth depth.
Returns

The object if it exists.
NULL if there is no object with this index and depth.

23.7.3.8 hwloc_get_obj_by_type()

hwloc_obj_t hwloc_get_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned idx) [inline]

Returns the topology object at logical index idx with type type.
Returns

The object if it exists.
NULL if there is no object with this index and type.

NULL if there are multiple levels with objects of that type (e.g. HWLOC_OBJ_GROUP), the caller may fallback
to hwloc_get_obj_by_depth().

23.7.3.9 hwloc_get_root_obij()

hwloc_obj_t hwloc_get_root_obj (
hwloc_topology_t topology) [inline]
Returns the top-object of the topology-tree.
Its type is HWLOC_OBJ_MACHINE.
This function cannot return NULL.

23.7.3.10 hwloc_get_type_depth()

int hwloc_get_type_depth (
hwloc_topology_t topology,
hwloc_obij_type_t type)

Returns the depth of objects of type type.

Generated by Doxygen

23.7 Object levels, depths and types 101

Returns

The depth of objects of type type.

A negative virtual depth if a NUMA node, 1/0 or Misc object type is given. These objects are stored in
special levels that are not CPU-related. This virtual depth may be passed to other hwloc functions such as
hwloc_get_obj_by depth() but it should not be considered as an actual depth by the application. In particular,
it should not be compared with any other object depth or with the entire topology depth.

HWLOC_TYPE_DEPTH_UNKNOWN if no object of this type is present on the underlying architecture, or if
the OS doesn't provide this kind of information.

HWLOC_TYPE_DEPTH_MULTIPLE if type HWLOC_OBJ_GROUP is given and multiple levels of Groups

exist.

Note
If the type is absent but a similar type is acceptable, see also hwloc_get_type or_below_depth() and
hwloc_get_type_or_above_depth().

See also

hwloc_get_memory_parents_depth() for managing the depth of memory objects.
hwloc_type_sscanf_as_depth() for returning the depth of objects whose type is given as a string.

23.7.3.11 hwloc_get_type_or_above_depth()

int hwloc_get_type_or_above_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the depth of objects of type t ype or above.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically containing t ype.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corre-
sponding virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

23.7.3.12 hwloc_get_type_or_below_depth()

int hwloc_get_type_or_below_depth (
hwloc_topology_t topology,
hwloc_obij_type_t type) [inline]
Returns the depth of objects of type t ype or below.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present"
object typically found inside type.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corre-
sponding virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

23.7.3.13 hwloc_topology_get_depth()

int hwloc_topology_get_depth (

hwloc_topology_t restrict topology)
Get the depth of the hierarchical tree of objects.
This is the depth of HWLOC_OBJ_PU objects plus one.

Returns

the depth of the object tree.

Note

NUMA nodes, I/0O and Misc objects are ignored when computing the depth of the tree (they are placed on
special levels).

Generated by Doxygen

102 Topic Documentation

23.8 Converting between Object Types and Attributes, and Strings

Functions

 const char * hwloc_obj_type_string (hwloc_obj_type_t type)

« int hwloc_obj_type_snprintf (char *restrict string, size_t size, hwloc_obj_t obj, int verbose)

« int hwloc_obj_attr_snprintf (char xrestrict string, size_t size, hwloc_obj_t obj, const char xrestrict separator,
int verbose)

« int hwloc_type_sscanf (const char xstring, hwloc_obj_type_t xtypep, union hwloc_obj_attr_u xattrp, size_t
attrsize)

« int hwloc_type_sscanf_as_depth (const char xstring, hwloc_obj_type_t xtypep, hwloc_topology_t topology,
int xdepthp)

23.8.1 Detailed Description

23.8.2 Function Documentation
23.8.2.1 hwloc_obj_attr_snprintf()

int hwloc_obj_attr_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
const char *restrict separator,
int verbose)
Stringify the attributes of a given topology object into a human-readable form.
Attribute values are separated by separator.
Only the major attributes are printed in non-verbose mode.
If sizeis 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not
including the ending \ 0).

23.8.2.2 hwloc_obj_type_snprintf()

int hwloc_obj_type_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
int verbose)
Stringify the type of a given topology object into a human-readable form.
Contrary to hwloc_obj_type_string(), this function includes object-specific attributes (such as the Group depth, the
Bridge type, or OS device type) in the output, and it requires the caller to provide the output buffer.
The output is guaranteed to be the same for all objects of a same topology level.
If verbose is 1, longer type names are used, e.g. L1Cache instead of L1.
The output string may be parsed back by hwloc_type_sscanf().
If sizeis 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not
including the ending \ 0).

23.8.2.3 hwloc_obj_type_string()

const char * hwloc_obj_type_string (
hwloc_obj_type_t type)
Return a constant stringified object type.

Generated by Doxygen

23.9 Consulting and Adding Info Attributes 103

This function is the basic way to convert a generic type into a string. The output string may be parsed back by
hwloc_type_sscanf().

hwloc_obj_type_snprintf() may return a more precise output for a specific object, but it requires the caller to provide
the output buffer.

Returns

A constant string containing the object type name or "Unknown".

23.8.2.4 hwloc_type_sscanf()

int hwloc_type_sscanf (

const char * string,

hwloc_obj_type_t * typep,

union hwloc_obj_attr_u * attrp,

size_t attrsize)
Return an object type and attributes from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types. Matching is case-insensitive, and
only the first letters are actually required to match.
The matched object type is set in t ypep (which cannot be NULL).
Type-specific attributes, for instance Cache type, Cache depth, Group depth, Bridge type or OS Device type may be
returned in at t rp. Attributes that are not specified in the string (for instance "Group" without a depth, or "L2Cache"
without a cache type) are set to -1.
attrp is only filled if not NULL and if its size specified in attrsize is large enough. It should be at least as
large as union hwloc_obj_attr_u.

Returns

0 if a type was correctly identified, otherwise -1.

Note

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().
This is an extended version of the now deprecated hwloc_obj_type_sscanf().

23.8.2.5 hwloc_type_sscanf_as_depth()

int hwloc_type_sscanf_as_depth (

const char * string,

hwloc_obj_type_t * typep,

hwloc_topology_t topology,

int * depthp)
Return an object type and its level depth from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types and return in depthp the depth of
the corresponding level in the topology topology.
If no object of this type is present on the underlying architecture, HWLOC_TYPE_DEPTH_UNKNOWN is returned.
If multiple such levels exist (for instance if giving Group without any depth), the function may return
HWLOC_TYPE_DEPTH_MULTIPLE instead.
The matched object type is set in t ypep if t ypep is non NULL.

Note

This function is similar to hwloc_type_sscanf() followed by hwloc_get_type_depth() but it also automatically
disambiguates multiple group levels etc.

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

23.9 Consulting and Adding Info Attributes

Functions

 const char * hwloc_obj_get_info_by_name (hwloc_obj_t obj, const char xname)

Generated by Doxygen

104 Topic Documentation

« int hwloc_obj_add_info (hwloc_obj_t obj, const char xname, const char *value)
« int hwloc_obj_set_subtype (hwloc_topology_t topology, hwloc_obj_t obj, const char xsubtype)

23.9.1 Detailed Description

23.9.2 Function Documentation
23.9.2.1 hwloc_obj_add_info()

int hwloc_obj_add_info (
hwloc_obj_t obj,
const char * name,
const char * value)
Add the given name and value pair to the given object info attributes.
The info pair is appended to the existing info array even if another pair with the same name already exists.
The input strings are copied before being added in the object infos.

Returns

0 on success, —1 on error.

Note

This function may be used to enforce object colors in the Istopo graphical output by adding "IstopoStyle" as a
name and "Background=#rrggbb" as a value. See CUSTOM COLORS in the Istopo(1) manpage for details.

If name or value contain some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

23.9.2.2 hwloc_obj_get_info_by name()

const char * hwloc_obj_get_info_by_name (
hwloc_obj_t obj,
const char * name) [inline]
Search the given name in object infos and return the corresponding value.
If multiple info attributes match the given name, only the first one is returned.

Returns

A pointer to the value string if it exists.

NULL if no such info attribute exists.

Note

The string should not be freed by the caller, it belongs to the hwloc library.

23.9.2.3 hwloc_obj_set_subtype()

int hwloc_obj_set_subtype (
hwloc_topology_t topology,
hwloc_obj_t obj,
const char * subtype)
Set (or replace) the subtype of an object.
The given subtype is copied internally, the caller is responsible for freeing the original subt ype if needed.
If another subtype already exists in object, it is replaced. The given subtype may be NULL to remove the
existing subtype.

Note

This function is mostly meant to initialize the subtype of user-added objects such as groups with
hwloc_topology_alloc_group_object().

Generated by Doxygen

23.10 CPU binding 105

Returns

0 on success.

-1 with errno set to ENOMEM on failure to allocate memory.

23.10 CPU binding

Enumerations

« enum hwloc_cpubind_flags t { HWLOC_CPUBIND_PROCESS , HWLOC_CPUBIND_THREAD ,
HWLOC_CPUBIND_STRICT , HWLOC_CPUBIND_NOMEMBIND }

Functions

« int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

« int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_set_proc_cpubind (hwloc_topology t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int
flags)

« int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

« int hwloc_set_thread_cpubind (hwloc_topology t topology, hwloc_thread t thread, hwloc_const_cpuset_t
set, int flags)

« int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int
flags)

« int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int
flags)

23.10.1 Detailed Description

Some operating systems only support binding threads or processes to a single PU. Others allow binding to larger
sets such as entire Cores or Packages or even random sets of individual PUs. In such operating system, the
scheduler is free to run the task on one of these PU, then migrate it to another PU, etc. It is often useful to call
hwloc_bitmap_singlify() on the target CPU set before passing it to the binding function to avoid these expensive
migrations. See the documentation of hwloc_bitmap_singlify() for details.

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc.
hwloc_topology_get_support() may be used to query about the actual CPU binding support in the currently used
operating system.

When the requested binding operation is not available and the HWLOC_CPUBIND_STRICT flag was passed, the
function returns -1. errno is set to ENOSYS when it is not possible to bind the requested kind of object pro-
cesses/threads. errno is set to EXDEV when the requested cpuset can not be enforced (e.g. some systems only
allow one CPU, and some other systems only allow one NUMA node).

If HWLOC_CPUBIND_STRICT was not passed, the function may fail as well, or the operating system may use a
slightly different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly
supported.

The most portable version that should be preferred over the others, whenever possible, is the following one which

just binds the current program, assuming it is single-threaded:
hwloc_set_cpubind(topology, set, 0),

If the program may be multithreaded, the following one should be preferred to only bind the current thread:
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),

See also

Some example codes are available under doc/examples/ in the source tree.

Note

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.
On some operating systems, CPU binding may have effects on memory binding, see HWLOC_CPUBIND_NOMEMBIND
Running Istopo --top or hwloc-ps can be a very convenient tool to check how binding actually happened.

Generated by Doxygen

106 Topic Documentation

23.10.2 Enumeration Type Documentation
23.10.2.1 hwloc_cpubind_flags_t

enum hwloc_cpubind_flags_t

Process/Thread binding flags.

These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is the most
portable way to bind as all operating systems usually provide it.

Note
Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding for a
description of errors that can occur.

Enumerator

HWLOC_CPUBIND_PROCESS | Bind all threads of the current (possibly) multithreaded process.
HWLOC_CPUBIND_THREAD | Bind current thread of current process.

HWLOC_CPUBIND_STRICT | Request for strict binding from the OS. By default, when the designated
CPUs are all busy while other CPUs are idle, operating systems may
execute the thread/process on those other CPUs instead of the
designated CPUs, to let them progress anyway. Strict binding means
that the thread/process will _never_ execute on other CPUs than the
designated CPUs, even when those are busy with other tasks and other
CPUs are idle.

Note

Depending on the operating system, strict binding may not be
possible (e.g., the OS does not implement it) or not allowed (e.g.,
for an administrative reasons), and the function will fail in that case.

When retrieving the binding of a process, this flag checks whether all its
threads actually have the same binding. If the flag is not given, the
binding of each thread will be accumulated.

Note

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND | Avoid any effect on memory binding. On some operating systems, some
CPU binding function would also bind the memory on the corresponding
NUMA node. It is often not a problem for the application, but if it is,
setting this flag will make hwloc avoid using OS functions that would also
bind memory. This will however reduce the support of CPU bindings, i.e.
potentially return -1 with errno set to ENOSYS in some cases.

This flag is only meaningful when used with functions that set the CPU
binding. It is ignored when used with functions that get CPU binding
information.

23.10.3 Function Documentation
23.10.3.1 hwloc_get_cpubind()

int hwloc_get_cpubind (
hwloc_topology_t topology,
hwloc_cpuset_t set,
int flags)

Get current process or thread binding.

Generated by Doxygen

23.10 CPU binding 107

The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread
(according to flags) was last bound to.

Returns

0 on success, -1 on error.

23.10.3.2 hwloc_get_last_cpu_location()

int hwloc_get_last_cpu_location (

hwloc_topology_t topology,

hwloc_cpuset_t set,

int flags)
Get the last physical CPU where the current process or thread ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread
(according to flags) last ran on.
The operating system may move some tasks from one processor to another at any time according to their binding,
so this function may return something that is already outdated.
flags can include either HWLOC_CPUBIND_PROCESS or HWLOC_CPUBIND_THREAD to specify whether the
query should be for the whole process (union of all CPUs on which all threads are running), or only the current
thread. If the process is single-threaded, flags can be set to zero to let hwloc use whichever method is available on
the underlying OS.

Returns

0 on success, -1 on error.

23.10.3.3 hwloc_get_proc_cpubind()

int hwloc_get_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of process pid.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process was last bound
to.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_«
CPUBIND_THREAD is passed in flags, the binding for that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

23.10.3.4 hwloc_get_proc_last_cpu_location()

int hwloc_get_proc_last_cpu_location (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_cpuset_t set,

int flags)
Get the last physical CPU where a process ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process last ran on.
The operating system may move some tasks from one processor to another at any time according to their binding,
so this function may return something that is already outdated.

Generated by Doxygen

108 Topic Documentation

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and
HWLOC_CPUBIND_THREAD is passed in flags, the last CPU location of that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

23.10.3.5 hwloc_get_thread_cpubind()

int hwloc_get_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of thread t 1d.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound
to.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

23.10.3.6 hwloc_set_cpubind()

int hwloc_set_cpubind (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int flags)

Bind current process or thread on CPUs given in physical bitmap set.

Returns
0 on success.

-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

23.10.3.7 hwloc_set_proc_cpubind()

int hwloc_set_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_const_cpuset_t set,
int flags)
Bind a process pid on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Generated by Doxygen

23.11 Memory binding 109

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and
HWLOC_CPUBIND_THREAD is passed in flags, the binding is applied to that specific thread.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

23.10.3.8 hwloc_set_thread_cpubind()

int hwloc_set_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_const_cpuset_t set,
int flags)

Bind a thread thread on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

23.11 Memory binding

Enumerations

« enum hwloc_membind_policy_t {
HWLOC_MEMBIND_DEFAULT , HWLOC_MEMBIND_ FIRSTTOUCH , HWLOC_MEMBIND BIND
HWLOC_MEMBIND_INTERLEAVE ,
HWLOC_MEMBIND_WEIGHTED_INTERLEAVE , HWLOC_MEMBIND_NEXTTOUCH , HWLOC_MEMBIND_MIXED
1

» enum hwloc_membind_flags_t {
HWLOC_MEMBIND_PROCESS , HWLOC MEMBIND THREAD , HWLOC MEMBIND STRICT |,
HWLOC_MEMBIND_MIGRATE ,
HWLOC_MEMBIND_NOCPUBIND , HWLOC_MEMBIND_BYNODESET }

Functions

+ int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set, hwloc_membind_policy_t
policy, int flags)

« int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set, hwloc_membind_policy_t xpolicy,
int flags)

+ int hwloc_set_proc_membind (hwloc_topology t topology, hwloc_pid_t pid, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« int hwloc_get_proc_membind (hwloc_topology t topology, hwloc_pid_t pid, hwloc_bitmap_t set,
hwloc_membind_policy_t *policy, int flags)

+ inthwloc_set_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_const_bitmap_t
set, hwloc_membind_policy_t policy, int flags)

« int hwloc_get_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t set,
hwloc_membind_policy_t *policy, int flags)

« int hwloc_get_area_memlocation (hwloc_topology t topology, const void xaddr, size_t len, hwloc_bitmap_t
set, int flags)

« void *x hwloc_alloc (hwloc_topology_t topology, size_t len)

» void * hwloc_alloc_membind (hwloc_topology t topology, size_t len, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

Generated by Doxygen

110 Topic Documentation

» void * hwloc_alloc_membind_policy (hwloc_topology_t topology, size_t len, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)
« int hwloc_free (hwloc_topology_t topology, void xaddr, size_t len)

23.11.1 Detailed Description

Memory binding can be done three ways:

« explicit memory allocation thanks to hwloc_alloc_membind() and friends: the binding will have effect on the
memory allocated by these functions.

+ implicit memory binding through binding policy: hwloc_set_membind() and friends only define the current
policy of the process, which will be applied to the subsequent calls to malloc() and friends.

» migration of existing memory ranges, thanks to hwloc_set_area_membind() and friends, which move already-
allocated data.

Not all operating systems support all three ways. hwloc_topology_get_support() may be used to query about the
actual memory binding support in the currently used operating system.

When the requested binding operation is not available and the HWLOC_MEMBIND_STRICT flag was passed, the
function returns -1. errno will be set to ENOSYS when the system does support the specified action or policy
(e.g., some systems only allow binding memory on a per-thread basis, whereas other systems only allow binding
memory for all threads in a process). errno will be set to EXDEV when the requested set can not be enforced
(e.g., some systems only allow binding memory to a single NUMA node).

If HWLOC_MEMBIND_STRICT was not passed, the function may fail as well, or the operating system may use a
slightly different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly
supported.

The most portable form that should be preferred over the others whenever possible is as follows. It allocates some
memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current memory
binding policy in order to actually get the memory bound, if the OS does not provide any other way to simply allocate
bound memory without changing the policy for all allocations. That is the difference with hwloc_alloc_membind(),

which will never change the current memory binding policy.
hwloc_alloc_membind_policy (topology, size, set,
HWLOC_MEMBIND_BIND, O0);

Each hwloc memory binding function takes a bitmap argument that is a CPU set by default, or a NUMA memory node
set if the flag HWLOC_MEMBIND_BYNODESET is specified. See Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
and The bitmap API for a discussion of CPU sets and NUMA memory node sets. It is also possible to convert
between CPU set and node set using hwloc_cpuset_to_nodeset() or hwloc_cpuset_from_nodeset().

Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by nodeset should therefore
be preferred whenever possible.

See also

Some example codes are available under doc/examples/ in the source tree.

Note
On some operating systems, memory binding affects the CPU binding; see HWLOC_MEMBIND_NOCPUBIND

23.11.2 Enumeration Type Documentation
23.11.2.1 hwloc_membind_flags_t

enum hwloc_membind_flags_t

Memory binding flags.

These flags can be used to refine the binding policy. All flags can be logically OR'ed together with the exception of
HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD; these two flags are mutually exclusive.

Not all systems support all kinds of binding. hwloc_topology get_support() may be used to query about the ac-
tual memory binding support in the currently used operating system. See the "Detailed Description" section of
Memory binding for a description of errors that can occur.

Generated by Doxygen

23.11 Memory binding 111

Enumerator

HWLOC_MEMBIND_PROCESS | Set policy for all threads of the specified (possibly multithreaded)
process. This flag is mutually exclusive with
HWLOC_MEMBIND_THREAD.

HWLOC_MEMBIND_THREAD | Set policy for a specific thread of the current process. This flag is
mutually exclusive with HWLOC_MEMBIND_PROCESS.

HWLOC_MEMBIND_STRICT | Request strict binding from the OS. The function will fail if the binding
can not be guaranteed / completely enforced.

This flag has slightly different meanings depending on which function it
is used with.

HWLOC_MEMBIND_MIGRATE | Migrate existing allocated memory. If the memory cannot be migrated
and the HWLOC_MEMBIND_STRICT flag is passed, an error will be
returned.

HWLOC_MEMBIND_NOCPUBIND | Avoid any effect on CPU binding. On some operating systems, some
underlying memory binding functions also bind the application to the
corresponding CPU(s). Using this flag will cause hwloc to avoid using
OS functions that could potentially affect CPU bindings. Note, however,
that using NOCPUBIND may reduce hwloc's overall memory binding
support. Specifically: some of hwloc's memory binding functions may
fail with errno set to ENOSYS when used with NOCPUBIND.
HWLOC_MEMBIND_BYNODESET | Consider the bitmap argument as a nodeset. The bitmap argument is
considered a nodeset if this flag is given, or a cpuset otherwise by
default.

Memory binding by CPU set cannot work for CPU-less NUMA memory
nodes. Binding by nodeset should therefore be preferred whenever
possible.

23.11.2.2 hwloc_membind_policy_t

enum hwloc_membind_policy_t

Memory binding policy.

These constants can be used to choose the binding policy. Only one policy can be used at a time (i.e., the values
cannot be OR'ed together).

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about the actual
memory binding policy support in the currently used operating system. See the "Detailed Description" section of
Memory binding for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_DEFAULT | Reset the memory allocation policy to the system default.
Depending on the operating system, this may correspond
to HWLOC_MEMBIND_FIRSTTOUCH (Linux, FreeBSD),
or HWLOC_MEMBIND_BIND (AIX, HP-UX, Solaris,
Windows). This policy is never returned by get membind
functions. The nodeset argument is ignored.

HWLOC_MEMBIND_FIRSTTOUCH | Allocate each memory page individually on the local
NUMA node of the thread that touches it. The given
nodeset should usually be
hwloc_topology_get_topology_nodeset() so that the
touching thread may run and allocate on any node in the
system.

On AlX, if the nodeset is smaller, pages are allocated
locally (if the local node is in the nodeset) or from a
random non-local node (otherwise).

Generated by Doxygen

112

Topic Documentation

Enumerator

HWLOC_MEMBIND_BIND

Allocate memory on the specified nodes. The actual
behavior may slightly vary between operating systems,
especially when (some of) the requested nodes are full.
On Linux, by default, the MPOL_PREFERRED_MANY (or
MPOL_PREFERRED) policy is used. However, if the
hwloc strict flag is also given, the Linux MPOL_BIND
policy is rather used.

HWLOC_MEMBIND_INTERLEAVE

Allocate memory on the given nodes in an interleaved /
round-robin manner. The precise layout of the memory
across multiple NUMA nodes is OS/system specific.
Interleaving can be useful when threads distributed across
the specified NUMA nodes will all be accessing the whole
memory range concurrently, since the interleave will then
balance the memory references.

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE

Allocate memory on the given nodes in an interleaved /
weighted manner. The precise layout of the memory
across multiple NUMA nodes is OS/system specific.
Weighted interleaving can be useful when threads
distributed across the specified NUMA nodes with different
bandwidth capabilities will all be accessing the whole
memory range concurrently, since the interleave will then
balance the memory references.

HWLOC_MEMBIND_NEXTTOUCH

For each page bound with this policy, by next time it is
touched (and next time only), it is moved from its current
location to the local NUMA node of the thread where the
memory reference occurred (if it needs to be moved at all).

HWLOC_MEMBIND_MIXED

Returned by get. membind() functions when multiple
threads or parts of a memory area have differing memory
binding policies. Also returned when binding is unknown
because binding hooks are empty when the topology is
loaded from XML without HWLOC_THISSYSTEM=1, etc.

23.11.3 Function Documentation
23.11.3.1 hwloc_alloc()

void * hwloc_alloc (
hwloc_topology_t topology,
size_t len)

Allocate some memory.

This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

Returns

a pointer to the allocated area, or NULL on error.

Note

The allocated memory should be freed with hwloc_free().

23.11.3.2 hwloc_alloc_membind()

void *x hwloc_alloc_membind (
hwloc_topology_t topology,

size_t len,

Generated by Doxygen

23.11 Memory binding 113

hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)

Allocate some memory on NUMA memory nodes specified by set.

Returns

a pointer to the allocated area.

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to ENOMEM if the memory allocation failed even before trying to bind.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
Note

The allocated memory should be freed with hwloc_free().

23.11.3.3 hwloc_alloc_membind_policy()

void * hwloc_alloc_membind_policy (

hwloc_topology_t topology,

size_t len,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags) [inline]
Allocate some memory on NUMA memory nodes specified by set.
First, try to allocate properly with hwloc_alloc_membind(). On failure, the current process or thread memory binding
policy is changed with hwloc_set_membind() before allocating memory. Thus this function works in more cases, at
the expense of changing the current state (possibly affecting future allocations that would not specify any policy).
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

a pointer to the allocated area, or NULL on error.

23.11.3.4 hwloc_free()

int hwloc_free (
hwloc_topology_t topology,
void x addr,
size_t len)
Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

Returns

0 on success, -1 on error.

23.11.3.5 hwloc_get_area_membind()

int hwloc_get_area_membind (

hwloc_topology_t topology,

const void *x addr,

size_t len,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr, len).
The bitmap set (previously allocated by the caller) is filled with the memory area binding.

Generated by Doxygen

114 Topic Documentation

This function has two output parameters: set and policy. The values returned in these parameters depend on
both the £1ags passed in and the memory binding policies and nodesets of the pages in the address range.

If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same
memory binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical
across all pages, the set and policy are returned in set and policy, respectively.

If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in the address
range is calculated. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy
is set to HWLOC_MEMBIND_MIXED.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success.
-1 with errno set to EINVAL if 1en is 0.

23.11.3.6 hwloc_get_area_memlocation()

int hwloc_get_area_memlocation (

hwloc_topology_t topology,

const void * addr,

size_t len,

hwloc_bitmap_t set,

int flags)
Get the NUMA nodes where memory identified by (addr, 1en) is physically allocated.
The bitmap set (previously allocated by the caller) is filled according to the NUMA nodes where the memory area
pages are physically allocated. If no page is actually allocated yet, set may be empty.
If pages spread to multiple nodes, it is not specified whether they spread equitably, or whether most of them are on
a single node, etc.
The operating system may move memory pages from one processor to another at any time according to their
binding, so this function may return something that is already outdated.
If HWLOC_MEMBIND_BYNODESET is specified in £1ags, set is considered a nodeset. Otherwise it's a cpuset.
If lenis 0, set is emptied.

Returns

0 on success, -1 on error.

23.11.3.7 hwloc_get_membind()

int hwloc_get_membind (

hwloc_topology_t topology,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the current process or thread.
The bitmap set (previously allocated by the caller) is filled with the process or thread memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on
both the f1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the current process. Passing HWLOC_MEMBIND_THREAD specifies that the query target is
the current policy and nodeset for only the thread invoking this function.
If neither of these flags are passed (which is the most portable method), the process is assumed to be single
threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on
which are available.
HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCESS is also specified. In this
case, hwloc will check the default memory policies and nodesets for all threads in the process. If they are not
identical, -1 is returned and errno is set to EXDEV. If they are identical, the values are returned in set andpolicy.

Generated by Doxygen

23.11 Memory binding 115

Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is not specified), the

default set from each thread is logically OR'ed together. If all threads' default policies are the same, policy is set

to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD
is specified), there is only one set and policy; they are returned in set and policy, respectively.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success, -1 on error.

23.11.3.8 hwloc_get_proc_membind()

int hwloc_get_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the specified process.
The bitmap set (previously allocated by the caller) is filled with the process memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on
both the £1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the specified process. If HWLOC_MEMBIND_PROCESS is not specified (which is the most
portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.
Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.
If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all
threads in the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are
identical, the values are returned in set and policy.
Otherwise, set is set to the logical OR of all threads' default set. If all threads' default policies are the same,
policy is setto that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns
0 on success, -1 on error.
Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

23.11.3.9 hwloc_set_area_membind()

int hwloc_set_area_membind (
hwloc_topology_t topology,
const void x addr,
size_t 1len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns
0 on success orif Lenis 0.
-1 with errno set to ENOSYS if the action is not supported.
-1 with errno set to EXDEV if the binding cannot be enforced.

Generated by Doxygen

116 Topic Documentation

23.11.3.10 hwloc_set_membind()

int hwloc_set_membind (

hwloc_topology_t topology,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) specified by
set.
If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is
assumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

23.11.3.11 hwloc_set_proc_membind()

int hwloc_set_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

23.12 Changing the Source of Topology Discovery

Enumerations

» enum hwloc_topology_components_flag_e { HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST }

Functions

« int hwloc_topology_set_pid (hwloc_topology _t restrict topology, hwloc_pid_t pid)

« int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char xrestrict description)

« int hwloc_topology_set_xml (hwloc_topology _t restrict topology, const char xrestrict xmlpath)

« int hwloc_topology_set_xmibuffer (hwloc_topology_t restrict topology, const char xrestrict buffer, int size)

« int hwloc_topology_set_components (hwloc_topology_t restrict topology, unsigned long flags, const char
xrestrict name)

Generated by Doxygen

23.12 Changing the Source of Topology Discovery 117

23.12.1 Detailed Description

These functions must be called between hwloc_topology_init() and hwloc_topology_load(). Otherwise, they will
return -1 with errno set to EBUSY.

If none of the functions below is called, the default is to detect all the objects of the machine that the caller is allowed
to access.

This default behavior may also be modified through environment variables if the application did not mod-
ify it already. Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if
hwloc_topology_set xml() had been called. Setting HWLOC_SYNTHETIC enforces a synthetic topology as if
hwloc_topology_set_synthetic() had been called.

Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology_is_thissystem().

23.12.2 Enumeration Type Documentation
23.12.2.1 hwloc_topology_components_flag_e

enum hwloc_topology_components_flag_e
Flags to be passed to hwloc_topology_set_components()

Enumerator

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST ‘ Blacklist the target component from being used.

23.12.3 Function Documentation
23.12.3.1 hwloc_topology_set_components()

int hwloc_topology_set_components (

hwloc_topology_t restrict topology,

unsigned long flags,

const char *restrict name)
Prevent a discovery component from being used for a topology.
name is the name of the discovery component that should not be used when loading topology topology. The
name is a string such as "cuda".
For components with multiple phases, it may also be suffixed with the name of a phase, for instance "linux:io".
flags should be HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST.
This may be used to avoid expensive parts of the discovery process. For instance, CUDA-specific discovery may
be expensive and unneeded while generic I/O discovery could still be useful.

Returns

0 on success.

-1 on error, for instance if flags are invalid.

23.12.3.2 hwloc_topology_set_pid()

int hwloc_topology_set_pid (

hwloc_topology_t restrict topology,

hwloc_pid_t pid)
Change which process the topology is viewed from.
On some systems, processes may have different views of the machine, for instance the set of allowed CPUs. By
default, hwloc exposes the view from the current process. Calling hwloc_topology_set_pid() permits to make it
expose the topology of the machine from the point of view of another process.

Generated by Doxygen

118 Topic Documentation

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.
-1 is returned and errno is set to ENOSY S on platforms that do not support this feature.

The PID will not actually be used until hwloc_topology_load(). If the corresponding process exits in the mean-
time, hwloc will ignore the PID. If another process reuses the PID, the view of that process will be used.

Returns

0 on success, -1 on error.

23.12.3.3 hwloc_topology_set_synthetic()

int hwloc_topology_set_synthetic (

hwloc_topology_t restrict topology,

const char *restrict description)
Enable synthetic topology.
Gather topology information from the given description, a space-separated string of <type:number> describ-
ing the object type and arity at each level. All types may be omitted (space-separated string of numbers) so that
hwloc chooses all types according to usual topologies. See also the Synthetic topologies.
Setting the environment variable HWLOC_SYNTHETIC may also result in this behavior.
If description was properly parsed and describes a valid topology configuration, this function returns 0. Other-
wise -1 is returned and errno is set to EINVAL.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.

-1 with errno set to EINVAL if the description was invalid.

Note

For convenience, this backend provides empty binding hooks which just return success.

On success, the synthetic component replaces the previously enabled component (if any), but the topology is
not actually modified until hwloc_topology_load().

23.12.3.4 hwloc_topology_set_xml()

int hwloc_topology_set_xml (

hwloc_topology_t restrict topology,

const char xrestrict xmlpath)
Enable XML-file based topology.
Gather topology information from the XML file given at xmlpath. Setting the environment variable
HWLOC_XMLFILE may also result in this behavior. This file may have been generated earlier with
hwloc_topology_export_xml() in hwloc/export.h, or Istopo file.xml.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.
-1 with errno set to EINVAL on failure to read the XML file.

Generated by Doxygen

23.13 Topology Detection Configuration and Query 119

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.
For convenience, this backend provides empty binding hooks which just return success. To have hwloc still
actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert
that the loaded file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology_load()
depending on the XML library used by hwloc.

23.12.3.5 hwloc_topology_set_xmlbuffer()

int hwloc_topology_set_xmlbuffer (

hwloc_topology_t restrict topology,

const char xrestrict buffer,

int size)
Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xml()).
Gather topology information from the XML memory buffer given at buffer and of length size (including an
ending \ 0). This buffer may have been filled earlier with hwloc_topology_export_xmlbuffer() in hwloc/export.h.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.
-1 with errno set to EINVAL on failure to read the XML buffer.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still
actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert
that the loaded file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology load()
depending on the XML library used by hwloc.

23.13 Topology Detection Configuration and Query

Data Structures

« struct hwloc_topology_discovery_support
« struct hwloc_topology_cpubind_support
« struct hwloc_topology _membind_support
« struct hwloc_topology misc_support

« struct hwloc_topology_support

Enumerations

» enum hwloc_topology_flags_e {
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED , HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM,
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_ RESOURCES , HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
= (1UL<<3),
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING = (1UL<<4), HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_M
= (1UL<<5), HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING = (1UL<<6) , HWLOC_TOPOLOGY_FLAG_NO_DIS

Generated by Doxygen

120 Topic Documentation

= (1UL<<7),
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS = (1UL<<8) , HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS
= (1UL<<9) }

« enum hwloc_type_filter_ e { HWLOC_TYPE_FILTER_KEEP_ALL , HWLOC_TYPE_FILTER_KEEP_NONE ,
HWLOC_TYPE_FILTER_KEEP_STRUCTURE , HWLOC_TYPE_FILTER_KEEP_IMPORTANT }

Functions

« int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

« unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

« int hwloc_topology_is_thissystem (hwloc_topology_t restrict topology)

+ const struct hwloc_topology_support * hwloc_topology_get_support (hwloc_topology_t restrict topology)

+ inthwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_ttype, enum hwloc_type_filter_e
filter)

« inthwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
«filter)

« int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_cache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_icache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_io_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« void hwloc_topology_set_userdata (hwloc_topology_t topology, const void xuserdata)

« void *x hwloc_topology_get_userdata (hwloc_topology_t topology)

23.13.1 Detailed Description

Several functions can optionally be called between hwloc_topology_init() and hwloc_topology_load() to configure
how the detection should be performed, e.g. to ignore some objects types, define a synthetic topology, etc.

23.13.2 Enumeration Type Documentation
23.13.2.1 hwloc_topology_flags_e

enum hwloc_topology_flags_e
Flags to be set onto a topology context before load.
Flags should be given to hwloc_topology_set_flags(). They may also be returned by hwloc_topology_get_flags().

Generated by Doxygen

23.13 Topology Detection Configuration and Query

121

Enumerator

HWLOC_TOPOLOGY_FLAG_INCLUDE_«-
DISALLOWED

Detect the whole system, ignore reservations, include
disallowed objects. Gather all online resources, even
if some were disabled by the administrator. For
instance, ignore Linux Cgroup/Cpusets and gather all
processors and memory nodes. However offline PUs
and NUMA nodes are still ignored.

When this flag is not set, PUs and NUMA nodes that
are disallowed are not added to the topology. Parent
objects (package, core, cache, etc.) are added only if
some of their children are allowed. All existing PUs
and NUMA nodes in the topology are allowed.
hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset() are equal to
the root object cpuset and nodeset.

When this flag is set, the actual sets of allowed PUs
and NUMA nodes are given by
hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset(). They may be
smaller than the root object cpuset and nodeset.

If the current topology is exported to XML and
reimported later, this flag should be set again in the
reimported topology so that disallowed resources are
reimported as well.

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM

Assume that the selected backend provides the
topology for the system on which we are running. This
forces hwloc_topology_is_thissystem() to return 1, i.e.
makes hwloc assume that the selected backend
provides the topology for the system on which we are
running, even if it is not the OS-specific backend but
the XML backend for instance. This means making
the binding functions actually call the OS-specific
system calls and really do binding, while the XML
backend would otherwise provide empty hooks just
returning success.

Setting the environment variable
HWLOC_THISSYSTEM may also result in the same
behavior.

This can be used for efficiency reasons to first detect
the topology once, save it to an XML file, and quickly
reload it later through the XML backend, but still
having binding functions actually do bind.

Generated by Doxygen

122 Topic Documentation

Enumerator

HWLOC_TOPOLOGY_FLAG_THISSYSTEM_« | Get the set of allowed resources from the local
ALLOWED_RESOURCES | operating system even if the topology was loaded
from XML or synthetic description. If the topology was
loaded from XML or from a synthetic string, restrict it
by applying the current process restrictions such as
Linux Cgroup/Cpuset.
This is useful when the topology is not loaded directly
from the local machine (e.g. for performance reason)
and it comes with all resources, while the running
process is restricted to only parts of the machine.
This flag is ignored unless
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM is
also set since the loaded topology must match the
underlying machine where restrictions will be
gathered from.
Setting the environment variable
HWLOC_THISSYSTEM_ALLOWED_RESOURCES
would result in the same behavior.
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT | Import support from the imported topology. When
importing a XML topology from a remote machine,
binding is disabled by default (see
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM).
This disabling is also marked by putting zeroes in the
corresponding supported feature bits reported by
hwloc_topology_get_support().
The flag
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
actually imports support bits from the remote
machine. It also sets the flag imported_support
in the struct hwloc_topology_misc_support array. If
the imported XML did not contain any support
information (exporter hwloc is too old), this flag is not
set.
Note that these supported features are only relevant
for the hwloc installation that actually exported the
XML topology (it may vary with the operating system,
or with how hwloc was compiled).
Note that setting this flag however does not enable
binding for the locally imported hwloc topology, it only
reports what the remote hwloc and machine support.

Generated by Doxygen

23.13 Topology Detection Configuration and Query

123

Enumerator

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_«
CPUBINDING

Do not consider resources outside of the process
CPU binding. If the binding of the process is limited to
a subset of cores, ignore the other cores during
discovery.

The resulting topology is identical to what a call to
hwloc_topology_restrict() would generate, but this flag
also prevents hwloc from ever touching other
resources during the discovery.

This flag especially tells the x86 backend to never
temporarily rebind a thread on any excluded core.
This is useful on Windows because such temporary
rebinding can change the process binding. Another
use-case is to avoid cores that would not be able to
perform the hwloc discovery anytime soon because
they are busy executing some high-priority real-time
tasks.

If process CPU binding is not supported, the thread
CPU binding is considered instead if supported, or the
flag is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM as
well since binding support is required.

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_«
MEMBINDING

Do not consider resources outside of the process
memory binding. If the binding of the process is
limited to a subset of NUMA nodes, ignore the other
NUMA nodes during discovery.

The resulting topology is identical to what a call to
hwloc_topology_restrict() would generate, but this flag
also prevents hwloc from ever touching other
resources during the discovery.

This flag is meant to be used together with
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBIN
when both cores and NUMA nodes should be ignored
outside of the process binding.

If process memory binding is not supported, the
thread memory binding is considered instead if
supported, or the flag is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM as
well since binding support is required.

HWLOC_TOPOLOGY_FLAG_DONT CHANGE
BINDING

Do not ever modify the process or thread binding
during discovery. This flag disables all hwloc
discovery steps that require a change of the process
or thread binding. This currently only affects the x86
backend which gets entirely disabled.

This is useful when hwloc_topology_load() is called
while the application also creates additional threads
or modifies the binding.

This flag is also a strict way to make sure the process
binding will not change to due thread binding changes
on Windows (see
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBIN

HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

Ignore distances. Ignore distance information from the
operating systems (and from XML) and hence do not
use distances for grouping.

Generated by Doxygen

DING

DING).

124

Topic Documentation

Enumerator

HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS | Ignore memory attributes and tiers. Ignore memory

attribues from the operating systems (and from XML)
Hence also do not try to build memory tiers.

HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS | Ignore CPU Kinds. Ignore CPU kind information from

the operating systems (and from XML).

23.13.2.2 hwloc_type_filter_e

enum hwloc_type_filter_e

Type filtering flags.

By default, most objects are kept (HWLOC_TYPE_FILTER_KEEP_ALL). Instruction caches, memory-side caches,
I/O and Misc objects are ignored by default (HWLOC_TYPE_FILTER_KEEP_NONE). Group levels are ignored
unless they bring structure (HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

Note that group objects are also ignored individually (without the entire level) when they do not bring structure.

Enumerator

HWLOC_TYPE_FILTER_KEEP_ALL

Keep all objects of this type. Cannot be set for
HWLOC_OBJ_GROUP (groups are designed only to add
more structure to the topology).

HWLOC_TYPE_FILTER_KEEP_NONE

Ignore all objects of this type. The bottom-level type
HWLOC_OBJ_PU, the HWLOC_OBJ_NUMANODE type,
and the top-level type HWLOC_OBJ_MACHINE may not be
ignored.

HWLOC_TYPE_FILTER_KEEP_STRUCTURE

Only ignore objects if their entire level does not bring any
structure. Keep the entire level of objects if at least one of
these objects adds structure to the topology. An object
brings structure when it has multiple children and it is not the
only child of its parent.

If all objects in the level are the only child of their parent, and
if none of them has multiple children, the entire level is
removed.

Cannot be set for /0O and Misc objects since the topology
structure does not matter there.

HWLOC_TYPE_FILTER_KEEP_IMPORTANT

Only keep likely-important objects of the given type. It is only
useful for I/O object types. For HWLOC_OBJ_PCI_DEVICE
and HWLOC_OBJ_OS_DEVICE, it means that only objects
of major/common kinds are kept (storage, network,
OpenFabrics, CUDA, OpenCL, RSMI, NVML, and displays).
Also, only OS devices directly attached on PCI (e.g. no
USB) are reported. For HWLOC_OBJ_BRIDGE, it means
that bridges are kept only if they have children.

This flag equivalent to HWLOC_TYPE_FILTER_KEEP_ALL
for Normal, Memory and Misc types since they are likely
important.

23.13.3 Function Documentation
23.13.3.1 hwloc_topology_get_flags()

unsigned long hwloc_topology_get_flags (
hwloc_topology_t topology)
Get OR'ed flags of a topology.

Get the OR'ed set of hwloc_topology_flags_e of a topology.

Generated by Doxygen

23.13 Topology Detection Configuration and Query 125

If hwloc_topology_set_flags() was not called earlier, no flags are set (0 is returned).
Returns

the flags previously set with hwloc_topology_set_flags().

Note

This function may also be called after hwloc_topology_load().

23.13.3.2 hwloc_topology_get_support()

const struct hwloc_topology_support * hwloc_topology_get_support (

hwloc_topology_t restrict topology)
Retrieve the topology support.
Each flag indicates whether a feature is supported. If set to 0, the feature is not supported. If set to 1, the feature is
supported, but the corresponding call may still fail in some corner cases.
These features are also listed by hwloc-info --support
The reported features are what the current topology supports on the current machine. If the topology was ex-
ported to XML from another machine and later imported here, support still describes what is supported for
this imported topology after import. By default, binding will be reported as unsupported in this case (see
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM).
Topology flag HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT may be used to report the supported features of
the original remote machine instead. If it was successfully imported, imported_support will be set in the struct
hwloc_topology_misc_support array.

Returns

A pointer to a support structure.

Note

The function cannot return NULL.
The returned pointer should not be freed, it belongs to the hwloc library.

This function may be called before or after hwloc_topology_load() but the support structure only contains valid
information after.

23.13.3.3 hwloc_topology_get_type_filter()

int hwloc_topology_get_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e *x filter)
Get the current filtering for the given object type.

Returns

0 on success, -1 on error.

23.13.3.4 hwloc_topology_get userdata()

void * hwloc_topology_get_userdata (
hwloc_topology_t topology)
Retrieve the topology-specific userdata pointer.
Retrieve the application-given private data pointer that was previously set with hwloc_topology_set_userdata().

Returns

A pointer to the private-data if any.
NULL if no private-data was previoulsy set.

Generated by Doxygen

126 Topic Documentation

23.13.3.5 hwloc_topology_is_thissystem()

int hwloc_topology_is_thissystem (
hwloc_topology_t restrict topology)
Does the topology context come from this system?

Returns

1 if this topology context was built using the system running this program.

0 instead (for instance if using another file-system root, a XML topology file, or a synthetic topology).

Note

This function may also be called after hwloc_topology_load().

23.13.3.6 hwloc_topology_set_all_types_filter()

int hwloc_topology_set_all_ types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all object types.

If some types do not support this filtering, they are silently ignored.

Returns

0 on success, -1 on error.

23.13.3.7 hwloc_topology_set_cache_types_filter()

int hwloc_topology_set_cache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all CPU cache object types.

Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

23.13.3.8 hwloc_topology_set_flags()

int hwloc_topology_set_flags (
hwloc_topology_t topology,
unsigned long flags)
Set OR'ed flags to non-yet-loaded topology.
Set a OR'ed set of hwloc_topology_flags_e onto a topology that was not yet loaded.
If this function is called multiple times, the last invocation will erase and replace the set of flags that was previously
set.
By default, no flags are set (0).
The flags set in a topology may be retrieved with hwloc_topology_get_flags().

Returns

0 on success.

-1 on error, for instance if flags are invalid.

Generated by Doxygen

23.14 Modifying a loaded Topology 127

23.13.3.9 hwloc_topology_set_icache_types_filter()

int hwloc_topology_set_icache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)
Set the filtering for all CPU instruction cache object types.
Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

23.13.3.10 hwloc_topology_set_io_types_filter()

int hwloc_topology_set_io_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all I/O object types.
Returns

0 on success, -1 on error.

23.13.3.11 hwloc_topology_set_type_filter()

int hwloc_topology_set_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e filter)

Set the filtering for the given object type.
Returns

0 on success, -1 on error.

23.13.3.12 hwloc_topology_set_userdata()

void hwloc_topology_set_userdata (
hwloc_topology_t topology,
const void *x userdata)
Set the topology-specific userdata pointer.
Each topology may store one application-given private data pointer. It is initialized to NULL. hwloc will never modify
it.
Use it as you wish, after hwloc_topology_init() and until hwloc_topolog_destroy().
This pointer is not exported to XML.

23.14 Modifying a loaded Topology

Enumerations

» enum hwloc_restrict_flags_e {
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS , HWLOC_RESTRICT_FLAG_BYNODESET = (1UL<<3)
, HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS , HWLOC_ RESTRICT_FLAG_ADAPT _MISC ,
HWLOC_RESTRICT_FLAG_ADAPT_IO }

» enum hwloc_allow_flags e { HWLOC_ALLOW_FLAG_ALL, HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS
, HWLOC_ALLOW_FLAG_CUSTOM }

Generated by Doxygen

128 Topic Documentation

Functions

« int hwloc_topology_restrict (hwloc_topology_t restrict topology, hwloc_const_bitmap_t set, unsigned long
flags)

« int hwloc_topology_allow (hwloc_topology_t restrict topology, hwloc_const_cpuset_t cpuset, hwloc_const_nodeset_t
nodeset, unsigned long flags)

» hwloc_obj_t hwloc_topology_insert_misc_object (hwloc_topology_t topology, hwloc_obj_t parent, const char
xname)

» hwloc_obj_t hwloc_topology_alloc_group_object (hwloc_topology_t topology)

« int hwloc_topology_free_group_object (hwloc_topology_t topology, hwloc_obj_t group)

» hwloc_obj_t hwloc_topology_insert_group_object (hwloc_topology_t topology, hwloc_obj_t group)

« int hwloc_obj_add_other_obj_sets (hwloc_obj_t dst, hwloc_obj_t src)

« int hwloc_topology_refresh (hwloc_topology_t topology)

23.14.1 Detailed Description

23.14.2 Enumeration Type Documentation
23.14.2.1 hwloc_allow_flags_e

enum hwloc_allow_flags_e
Flags to be given to hwloc_topology_allow().

Enumerator

HWLOC_ALLOW_FLAG_ALL | Mark all objects as allowed in the topology. cpuset
and nodeset given to hwloc_topology_allow() must
be NULL.
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS | Only allow objects that are available to the current
process. The topology must have
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM so
that the set of available resources can actually be
retrieved from the operating system.

cpuset and nodeset given to
hwloc_topology_allow() must be NULL.

HWLOC_ALLOW_FLAG_CUSTOM | Allow a custom set of objects, given to

hwloc_topology_allow() as cpuset and/or
nodeset parameters.

23.14.2.2 hwloc_restrict_flags_e

enum hwloc_restrict_flags_e
Flags to be given to hwloc_topology_restrict().

Enumerator

HWLOC_RESTRICT_FLAG_REMOVE_CPULESS | Remove all objects that became CPU-less. By
default, only objects that contain no PU and no
memory are removed. This flag may not be used with
HWLOC_RESTRICT_FLAG_BYNODESET.
HWLOC_RESTRICT_FLAG_BYNODESET | Restrict by nodeset instead of CPU set. Only keep
objects whose nodeset is included or partially
included in the given set. This flag may not be used
with
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS.

Generated by Doxygen

23.14 Modifying a loaded Topology

129

Enumerator

HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS

Remove all objects that became Memory-less. By
default, only objects that contain no PU and no
memory are removed. This flag may only be used
with HWLOC_RESTRICT_FLAG_BYNODESET.

HWLOC_RESTRICT_FLAG_ADAPT_MISC

Move Misc objects to ancestors if their parents are
removed during restriction. If this flag is not set, Misc

objects are removed when their parents are removed.

HWLOC_RESTRICT_FLAG_ADAPT_IO

Move /O objects to ancestors if their parents are
removed during restriction. If this flag is not set, /0
devices and bridges are removed when their parents
are removed.

23.14.3 Function Documentation

23.14.3.1 hwloc_obj_add_other_obj_sets()

int hwloc_obj_add_other_obj_sets (
hwloc_obj_t dst,

hwloc_obj_t src)

Setup object cpusets/nodesets by OR'ing another object's sets.
For each defined cpuset or nodeset in src, allocate the corresponding set in dst and add src to it by OR'ing

sets.

This function is convenient between hwloc_topology_alloc_group_object() and hwloc_topology_insert_group_object().
It builds the sets of the new Group that will be inserted as a new intermediate parent of several objects.

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

23.14.3.2 hwloc_topology_alloc_group_object()

hwloc_obj_t hwloc_topology_alloc_group_object
hwloc_topology_t topology)

Allocate a Group object to insert later with hwloc_topology_insert_group_object().

This function returns a new Group object.

The caller should (at least) initialize its sets before inserting the object in the topology, see hwloc_topology_insert_group_object().

Or it may decide not to insert and just free the group object by calling hwloc_topology_free_group_object().

Returns

The allocated object on success.

NULL on error.

Note

If successfully inserted by hwloc_topology_insert_group_object(), the object will be freed when the entire
topology is freed. If insertion failed (e.g. NULL or empty CPU and node-sets), it is freed before returning the

error.

23.14.3.3 hwloc_topology_allow()

int hwloc_topology_allow (

hwloc_topology_t restrict topology,

hwloc_const_cpuset_t cpuset,

Generated by Doxygen

130 Topic Documentation

hwloc_const_nodeset_t nodeset,

unsigned long flags)
Change the sets of allowed PUs and NUMA nodes in the topology.
This function only works if the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set on the topology.
It does not modify any object, it only changes the sets returned by hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset().
It is notably useful when importing a topology from another process running in a different Linux Cgroup.
flags must be set to one flag among hwloc_allow_flags_e.

Returns

0 on success, -1 on error.

Note

Removing objects from a topology should rather be performed with hwloc_topology_restrict().

23.14.3.4 hwloc_topology_free_group_object()

int hwloc_topology_free_group_object (
hwloc_topology_t topology,
hwloc_obj_t group)
Free a group object allocated with hwloc_topology_alloc_group_object().
This function is only useful if the group object was not given to hwloc_topology_insert_group_object() as planned.

Note

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

0 on success.

-1 on error, for instance if an invalid topology is given.

23.14.3.5 hwloc_topology_insert_group_object()

hwloc_obj_t hwloc_topology_insert_group_object (

hwloc_topology_t topology,

hwloc_obj_t group)
Add more structure to the topology by adding an intermediate Group.
The caller should first allocate a new Group object with hwloc_topology_alloc_group_object(). Then it must setup
at least one of its CPU or node sets to specify the final location of the Group in the topology. Then the object can
be passed to this function for actual insertion in the topology.
The main use case for this function is to group a subset of siblings among the list of children below a single parent.
For instance, if grouping 4 cores out of a 8-core socket, the logical list of cores will be reordered so that the 4
grouped ones are consecutive. Then, if needed, a new depth is added between the parent and those children, and
the Group is inserted there. At the end, the 4 grouped cores are now children of the Group, which replaces them as
a child of the original parent.
In practice, the grouped objects are specified through cpusets and/or nodesets, for instance using
hwloc_obj_add_other_obj_sets() iteratively. Hence it is possible to group objects that are not children of the
same parent, for instance some PUs below the 4 cores in example above. However this general case may fail if
the expected Group conflicts with the existing hierarchy. For instance if each core has two PUs, it is not possible to
insert a Group containing a single PU of each core.
To specify the objects to group, either the cpuset or nodeset field (or both, if compatible) must be set to a non-empty
bitmap. The complete_cpuset or complete_nodeset may be set instead if inserting with respect to the complete
topology (including disallowed, offline or unknown objects). These sets cannot be larger than the current topology,
or they would get restricted silently. The core will setup the other sets after actual insertion.
The subt ype object attribute may be defined with hwloc_obj_set_subtype() to display something else than "Group"
as the type name for this object in Istopo. Custom name-value info pairs may be added with hwloc_obj_add_info()
after insertion.

Generated by Doxygen

23.14 Modifying a loaded Topology 131

The group dont_mexrge attribute may be set to 1 to prevent the hwloc core from ever merging this object with
another hierarchically-identical object. This is useful when the Group itself describes an important feature that
cannot be exposed anywhere else in the hierarchy.

The group kind attribute may be set to a high value such as Oxff££ffff to tell hwloc that this new Group
should always be discarded in favor of any existing Group with the same locality.

Note

Inserting a group adds some locality information to the topology, hence the existing objects may get reordered
(including PUs and NUMA nodes), and their logical indexes may change.

If the insertion fails, the input group object is freed.

If the group object should be discarded instead of inserted, it may be passed to hwloc_topology_free_group_object()

instead.

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

The inserted object if it was properly inserted.

An existing object if the Group was merged or discarded because the topology already contained an object at
the same location (the Group did not add any hierarchy information).

NULL if the insertion failed because of conflicting sets in topology tree.
NULL if Group objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

NULL if the object was discarded because no set was initialized in the Group before insert, or all of them were
empty.

23.14.3.6 hwloc_topology_insert_misc_object()

hwloc_obj_t hwloc_topology_insert_misc_object (

hwloc_topology_t topology,

hwloc_obj_t parent,

const char *x name)
Add a MISC object as a leaf of the topology.
A new MISC object will be created and inserted into the topology at the position given by parent. It is appended to
the list of existing Misc children, without ever adding any intermediate hierarchy level. This is useful for annotating
the topology without actually changing the hierarchy.
name is supposed to be unique across all Misc objects in the topology. It will be duplicated to setup the new object
attributes.
The new leaf object will not have any cpuset.
The subt ype object attribute may be defined with hwloc_obj_set_subtype() after successful insertion.

Returns

the newly-created object
NULL on error.
NULL if Misc objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

Note

If name contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

23.14.3.7 hwloc_topology_refresh()

int hwloc_topology_refresh (
hwloc_topology_t topology)
Refresh internal structures after topology modification.

Generated by Doxygen

132 Topic Documentation

Modifying the topology (by restricting, adding objects, modifying structures such as distances or memory attributes,
etc.) may cause some internal caches to become invalid. These caches are automatically refreshed when accessed
but this refreshing is not thread-safe.

This function is not thread-safe either, but it is a good way to end a non-thread-safe phase of topology modification.
Once this refresh is done, multiple threads may concurrently consult the topology, objects, distances, attributes, etc.
See also Thread Safety

Returns

0 on success.

-1 on error, for instance if some internal reallocation failed.

23.14.3.8 hwloc_topology_restrict()

int hwloc_topology_restrict (

hwloc_topology_t restrict topology,

hwloc_const_bitmap_t set,

unsigned long flags)
Restrict the topology to the given CPU set or nodeset.
Topology topology is modified so as to remove all objects that are not included (or partially included) in the CPU
set set. All objects CPU and node sets are restricted accordingly.
By default, set is a CPU set. It means that the set of PUs in the topology is restricted. Once some PUs got
removed, their parents may also get removed recursively if they became child-less.
If HWLOC_RESTRICT_FLAG_BYNODESET is passed in flags, set is considered a nodeset instead of a CPU
set. It means that the set of NUMA nodes in the topology is restricted (instead of PUs). Once some NUMA nodes
got removed, their parents may also get removed recursively if they became child-less.
flags is a OR'ed set of hwloc_restrict_flags_e.

Note
Restricting the topology removes some locality information, hence the remaining objects may get reordered
(including PUs and NUMA nodes), and their logical indexes may change.

This call may not be reverted by restricting back to a larger set. Once dropped during restriction, objects may
not be brought back, except by loading another topology with hwloc_topology_load().

Returns

0 on success.
-1 with errno set to EINVAL if the input set is invalid. The topology is not modified in this case.

-1 with errno set to ENOMEM on failure to allocate internal data. The topology is reinitialized in this case. It
should be either destroyed with hwloc_topology_destroy() or configured and loaded again.

23.15 Kinds of object Type

Functions

« int hwloc_obj_type_is_normal (hwloc_obj_type_t type)
* int hwloc_obj_type_is_io (hwloc_obj_type_t type)

« int hwloc_obj_type_is_memory (hwloc_obj_type_t type)
« int hwloc_obj_type_is_cache (hwloc_obj_type_t type)

« int hwloc_obj_type_is_dcache (hwloc_obj_type_t type)
« int hwloc_obj_type_is_icache (hwloc_obj_type_t type)

23.15.1 Detailed Description

Each object type is either Normal (i.e. hwloc_obj_type_is_normal() returns 1), or Memory (i.e. hwloc_obj_type_is_memory()
returns 1) or I/O (i.e. hwloc_obj_type_is_io() returns 1) or Misc (i.e. equal to HWLOC_OBJ_MISC). It cannot be of

more than one of these kinds.

See also Object Kind in Terms and Definitions.

Generated by Doxygen

23.15 Kinds of object Type 133

23.15.2 Function Documentation
23.15.2.1 hwloc_obj_type_is_cache()

int hwloc_obj_type_is_cache (

hwloc_obj_type_t type)
Check whether an object type is a CPU Cache (Data, Unified or Instruction).
Memory-side caches are not CPU caches.

Returns

1 if an object of type t ype is a Cache, 0 otherwise.

23.15.2.2 hwloc_obj_type_is_dcache()

int hwloc_obj_type_is_dcache (

hwloc_obj_type_t type)
Check whether an object type is a CPU Data or Unified Cache.
Memory-side caches are not CPU caches.

Returns

1 if an object of type type is a CPU Data or Unified Cache, 0 otherwise.

23.15.2.3 hwloc_obj_type_is_icache()

int hwloc_obj_type_is_icache (

hwloc_obj_type_t type)
Check whether an object type is a CPU Instruction Cache,.
Memory-side caches are not CPU caches.

Returns

1 if an object of type t ype is a CPU Instruction Cache, 0 otherwise.

23.15.2.4 hwloc_obj_type_is_io()

int hwloc_obj_type_is_io (
hwloc_obj_type_t type)
Check whether an object type is I/0.
I/O objects are objects attached to their parents in the I/O children list. This current includes Bridges, PCl and OS
devices.

Returns

1 if an object of type t ype is a I/O object, 0 otherwise.

23.15.2.5 hwloc_obj_type_is_memory()

int hwloc_obj_type_is_memory (
hwloc_obj_type_t type)
Check whether an object type is Memory.
Memory objects are objects attached to their parents in the Memory children list. This current includes NUMA nodes
and Memory-side caches.

Returns

1 if an object of type t ype is a Memory object, 0 otherwise.

Generated by Doxygen

134 Topic Documentation

23.15.2.6 hwloc_obj_type_is_normal()

int hwloc_obj_type_is_normal (
hwloc_obj_type_t type)
Check whether an object type is Normal.
Normal objects are objects of the main CPU hierarchy (Machine, Package, Core, PU, CPU caches, etc.), but they
are not NUMA nodes, 1/0O devices or Misc objects.
They are attached to parent as Normal children, not as Memory, I/O or Misc children.

Returns

1 if an object of type t ype is a Normal object, 0 otherwise.

23.16 Finding Objects inside a CPU set

Functions

» hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology t topology, hwloc_const_cpuset_t
set)

« int hwloc_get_largest_objs_inside_cpuset (hwloc_topology t topology, hwloc_const_cpuset_t set,
hwloc_obj_t *restrict objs, int max)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t
set, hwloc_obj_type_t type, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set,

int depth, unsigned idx)

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,

hwloc_obj_type_t type, unsigned idx)

unsigned hwloc_get_nbobjs_inside_cpuset_by depth (hwloc_topology t topology, hwloc_const_cpuset_t

set, int depth)

» int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology t topology, hwloc_const_cpuset_t set,

hwloc_obj_type_t type)

int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t

obj)

23.16.1 Detailed Description

23.16.2 Function Documentation
23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()

hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first largest object included in the given cpuset set.

Returns
the first object that is included in set and whose parent is not.

NULL if no such object exists.

This is convenient for iterating over all largest objects within a CPU set by doing a loop getting the first largest object
and clearing its CPU set from the remaining CPU set.

23.16.2.2 hwloc_get_largest_objs_inside_cpuset()

int hwloc_get_largest_objs_inside_cpuset (
hwloc_topology_t topology,

hwloc_const_cpuset_t set,

Generated by Doxygen

23.16 Finding Objects inside a CPU set 135

hwloc_obj_t *restrict objs,
int max)
Get the set of largest objects covering exactly a given cpuset set.

Returns

the number of objects returned in objs.

-1 if no set of objects may cover that cpuset.

23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()

unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth) [inline]

Return the number of objects at depth depth included in CPU set set.

Returns

the number of objects.
0 if the depth is invalid.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by type()

int hwloc_get_nbobjs_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type) [inline]

Return the number of objects of type t ype included in CPU set set.

Returns

the number of objects.
0 if there are no objects of that type in the topology.

-1 if there are multiple levels of objects of that type, the caller should fallback to hwloc_get_nbobjs_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (I/O objects).

23.16.2.5 hwloc_get_next_obj_inside_cpuset_by_depth()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Return the next object at depth depth included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Generated by Doxygen

136 Topic Documentation

Returns

the first object at depth depth included in set if prev is NULL.
the next object at depth depth included in set if prev is not NULL.

NULL if there is no next object.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obij_type_t type,
hwloc_obj_t prev) [inline]
Return the next object of type t ype included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Returns

the first object of type t ype included in set if prev is NULL.

the next object of type t ype included in set if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

23.16.2.7 hwloc_get_obj_index_inside_cpuset()

int hwloc_get_obj_index_inside_cpuset (

hwloc_topology_t topology,

hwloc_const_cpuset_t set,

hwloc_obj_t obj) [inline]
Return the logical index among the objects included in CPU set set.
Consult all objects in the same level as obj and inside CPU set set in the logical order, and return the index of
ob j within them. If set covers the entire topology, this is the logical index of ol j. Otherwise, this is similar to a
logical index within the part of the topology defined by CPU set set.

Returns

the logical index among the objects included in the set if any.

-1 if the object is not included in the set.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if obj does not have CPU sets (I/O objects).

Generated by Doxygen

23.17 Finding Objects covering at least CPU set 137

23.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
unsigned idx) [inline]

Return the (logically) 1dx -th object at depth depth included in CPU set set.
Returns

the object if any, NULL otherwise.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
unsigned idx) [inline]

Return the idx -th object of type t ype included in CPU set set.
Returns

the object if any.

NULL if there is no such object.

NULL if there is no depth for given type.

NULL if there are multiple depths for given type, the caller should fallback to hwloc_get_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

23.17 Finding Objects covering at least CPU set

Functions

» hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology t topology, hwloc_const_cpuset t set,
hwloc_obj_t parent)

» hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_ttopology, hwloc_const_cpuset_t
set, hwloc_obj_type_t type, hwloc_obj_t prev)

23.17.1 Detailed Description

23.17.2 Function Documentation
23.17.2.1 hwloc_get_child_covering_cpuset()

hwloc_obj_t hwloc_get_child_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_t parent) [inline]
Get the child covering at least CPU set set.

Generated by Doxygen

138 Topic Documentation

Returns

the child that covers the set entirely.

NULL if no child matches or if set is empty.

Note

This function cannot work if parent does not have a CPU set (I/O or Misc objects).

23.17.2.2 hwloc_get_next_obj_covering_cpuset_by_ depth()

hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Iterate through same-depth objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object covering at least
another part of set.

Returns

the first object at depth depth covering at least part of CPU set set if object prev is NULL.
the next one if prev is not NULL.
NULL if there is no next object.

Note

This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.17.2.3 hwloc_get_next_obj_covering_cpuset_by type()

hwloc_obj_t hwloc_get_next_obj_covering cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]
Iterate through same-type objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object of type type
covering at least another part of set.

Returns

the first object of type t ype covering at least part of CPU set set if object prev is NULL.

the next one if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_covering_cpuset_by_depth(

Note

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

Generated by Doxygen

23.18 Looking at Ancestor and Child Objects

139

23.17.2.4 hwloc_get_obj_covering_cpuset()

hwloc_obj_t hwloc_get_obj_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]
Get the lowest object covering at least CPU set set.

Returns

the lowest object covering the set entirely.

NULL if no object matches or if set is empty.

23.18 Looking at Ancestor and Child Objects

Functions

» hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_obj_t obj)
» hwloc_obj_t hwloc_get _ancestor_obj_by_type (hwloc_topology_ t topology, hwloc_obj_type t
hwloc_obj_t obj)

type,

» hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology, hwloc_obj t obj1, hwloc_obj_t

obj2)
« int hwloc_obj_is_in_subtree (hwloc_topology_t topology, hwloc_obj_t obj, hwloc_obj_t subtree_root)
» hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology, hwloc_obj_t parent, hwloc_obj_t prev)

23.18.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches

than its peers.

23.18.2 Function Documentation
23.18.2.1 hwloc_get_ancestor_obj_by_depth()

hwloc_obj_t hwloc_get_ancestor_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obj_t obj) [inline]
Returns the ancestor object of ob j at depth depth.

Returns

the ancestor if any.

NULL if no such ancestor exists.

Note

depth should not be the depth of PU or NUMA objects since they are ancestors of no objects (except Misc
or 1/0). This function rather expects an intermediate level depth, such as the depth of Packages, Cores, or

Caches.

23.18.2.2 hwloc_get_ancestor_obj_by_type()

hwloc_obj_t hwloc_get_ancestor_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
hwloc_obj_t obj) [inline]

Returns the ancestor object of ob j with type type.

Generated by Doxygen

140 Topic Documentation

Returns

the ancestor if any.

NULL if no such ancestor exists.

Note

if multiple matching ancestors exist (e.g. multiple levels of HWLOC_OBJ_GROUP) the lowest one is returned.

type should not be HWLOC_OBJ_PU or HWLOC_OBJ_NUMANODE since these objects are ances-
tors of no objects (except Misc or I/O). This function rather expects an intermediate object type, such as
HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, etc.

23.18.2.3 hwloc_get_common_ancestor_obij()

hwloc_obj_t hwloc_get_common_ancestor_obj (
hwloc_topology_t topology,
hwloc_obj_t objl,
hwloc_obij_t obj2) [inline]

Returns the common parent object to objects obj1 and obj2.

Returns

the common ancestor.

Note

This function cannot return NULL.

23.18.2.4 hwloc_get_next_child()

hwloc_obj_t hwloc_get_next_child (
hwloc_topology_t topology,
hwloc_obj_t parent,
hwloc_obj_t prev) [inline]
Return the next child.
Return the next child among the normal children list, then among the memory children list, then among the I/O
children list, then among the Misc children list.

Returns

the first child if prev is NULL.
the next child if prev is not NULL.

NULL when there is no next child.

23.18.2.5 hwloc_obj_is_in_subtree()

int hwloc_obj_is_in_subtree (
hwloc_topology_t topology,
hwloc_obj_t obj,
hwloc_obj_t subtree_root) [inline]
Returns true if obj is inside the subtree beginning with ancestor object subtree_root.

Returns

1 is the object is in the subtree, 0 otherwise.

Note

This function cannot work if obj and subtree_root objects do not have CPU sets (/O or Misc objects).

Generated by Doxygen

23.19 Looking at Cache Objects 141

23.19 Looking at Cache Objects

Functions

« int hwloc_get_cache_type_depth (hwloc_topology_t topology, unsigned cachelevel, hwloc_obj_cache_type_t
cachetype)

» hwloc_obj_t hwloc_get_cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology, hwloc_obj_t obj)

23.19.1 Detailed Description

23.19.2 Function Documentation
23.19.2.1 hwloc_get_cache_covering_cpuset()

hwloc_obj_t hwloc_get_cache_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first data (or unified) cache covering a cpuset set.

Returns

a covering cache, or NULL if no cache matches.

23.19.2.2 hwloc_get_cache_type_depth()

int hwloc_get_cache_type_depth (

hwloc_topology_t topology,

unsigned cachelevel,

hwloc_obj_cache_type_t cachetype) [inline]
Find the depth of cache objects matching cache level and type.
Return the depth of the topology level that contains cache objects whose attributes match cachelevel and
cachetype.
This function is identical to calling hwloc_get_type_depth() with the corresponding type such as HWLOC_OBJ_L1ICACHE,
except that it may also return a Unified cache when looking for an instruction cache.

Returns

the depth of the unique matching unified cache level is returned if cachet ype is HWLOC_OBJ_CACHE_UNIFIED.

the depth of either a matching cache level or a unified cache level if cachet ype is HWLOC_OBJ_CACHE_DATA
or HWLOC_OBJ_CACHE_INSTRUCTION.

the depth of the matching level if cachetype is —1 but only one level matches.
HWLOC_TYPE_DEPTH_MULTIPLE if cachetype is —1 but multiple levels match.
HWLOC_TYPE_DEPTH_UNKNOWN if no cache level matches.

23.19.2.3 hwloc_get_shared_cache_covering_obij()

hwloc_obj_t hwloc_get_shared_cache_covering_obj (
hwloc_topology_t topology,
hwloc_obj_t obj) [inline]
Get the first data (or unified) cache shared between an object and somebody else.

Returns

a shared cache.

NULL if no cache matches or if an invalid object is given (e.g. I/O object).

Generated by Doxygen

142 Topic Documentation

23.20 Finding objects, miscellaneous helpers

Functions

« int hwloc_bitmap_singlify_per_core (hwloc_topology_t topology, hwloc_bitmap_t cpuset, unsigned which)

» hwloc_obj_t hwloc_get_pu_obj_by os_index (hwloc_topology_t topology, unsigned os_index)

» hwloc_obj_t hwloc_get_numanode_obj_by_os_index (hwloc_topology_t topology, unsigned os_index)

+ unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t xrestrict objs,
unsigned max)

» hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology, hwloc_obj_type_t typel, unsigned
idx1, hwloc_obj_type_t type2, unsigned idx2)

» hwloc_obj_t hwloc_get_obj below_array by type (hwloc_topology t topology, int nr, hwloc_obj type t
xtypev, unsigned *idxv)

» hwloc_obj_t hwloc_get_obj_with_same_locality (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_type_t
type, const char xsubtype, const char xnameprefix, unsigned long flags)

23.20.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

23.20.2 Function Documentation
23.20.2.1 hwloc_bitmap_singlify_per_core()

int hwloc_bitmap_singlify_per_core (

hwloc_topology_t topology,

hwloc_bitmap_t cpuset,

unsigned which)
Remove simultaneous multithreading PUs from a CPU set.
For each core in topology, if cpuset contains some PUs of that core, modify cpuset to only keep a single
PU for that core.
which specifies which PU will be kept. PU are considered in physical index order. If 0, for each core, the function
keeps the first PU that was originally set in cpuset.
If which is larger than the number of PUs in a core there were originally set in cpuset, no PU is kept for that
core.

Returns

0.

Note

PUs that are not below a Core object are ignored (for instance if the topology does not contain any Core
object). None of them is removed from cpuset.

23.20.2.2 hwloc_get_closest_objs()

unsigned hwloc_get_closest_objs (
hwloc_topology_t topology,
hwloc_obj_t src,
hwloc_obj_t *restrict objs,
unsigned max)
Do a depth-first traversal of the topology to find and sort.
all objects that are at the same depth than src. Report in objs up to max physically closest ones to src.

Generated by Doxygen

23.20 Finding objects, miscellaneous helpers 143

Returns

the number of objects returned in objs.
0if srcis an I/O object.

Note

This function requires the src object to have a CPU set.

23.20.2.3 hwloc_get_numanode_obj_by os_index()

hwloc_obj_t hwloc_get_numanode_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_NUMANODE with os_index.
This function is useful for converting a nodeset into the NUMA node objects it contains. When retrieving the current
binding (e.g. with hwloc_get_membind() with HWLOC_MEMBIND_BYNODESET), one may iterate over the bits
of the resulting nodeset with hwloc_bitmap_foreach_begin(), and find the corresponding NUMA nodes with this
function.
Returns

the NUMA node object, or NULL if none matches.

23.20.2.4 hwloc_get_obj_below_array by_type()

hwloc_obj_t hwloc_get_obj_below_array_by_type (

hwloc_topology_t topology,

int nr,

hwloc_obj_type_t * typev,

unsigned * idxv) [inline]
Find an object below a chain of objects specified by types and indexes.
This is a generalized version of hwloc_get_obj_below_by_type().
Arrays typev and idxv must contain nr types and indexes.
Start from the top system object and walk the arrays t ypev and idxv. For each type and logical index couple in
the arrays, look under the previously found object to find the index-th object of the given type. Indexes are specified
within the parent, not withing the entire system.
For instance, if nr is 3, typev contains NODE, PACKAGE and CORE, and idxv contains 0, 1 and 2, return the third
core object below the second package below the first NUMA node.

Returns

a matching object if any, NULL otherwise.

Note

This function requires all these objects and the root object to have a CPU set.

23.20.2.5 hwloc_get _obj_below_by_type()

hwloc_obj_t hwloc_get_obj_below_by_type (

hwloc_topology_t topology,

hwloc_obj_type_t typel,

unsigned idxI,

hwloc_obj_type_t type2,

unsigned idx2) [inline]
Find an object below another object, both specified by types and indexes.
Start from the top system object and find object of type t ype 1 and logical index idx1. Then look below this object
and find another object of type t ype2 and logical index 1dx2. Indexes are specified within the parent, not withing
the entire system.
For instance, if type1 is PACKAGE, idx1 is 2, type2 is CORE and idx2 is 3, return the fourth core object below the
third package.

Generated by Doxygen

144 Topic Documentation

Returns

a matching object if any, NULL otherwise.

Note

This function requires these objects to have a CPU set.

23.20.2.6 hwloc_get_obj_with_same_locality()

hwloc_obj_t hwloc_get_obj_with_same_locality (

hwloc_topology_t topology,

hwloc_obj_t src,

hwloc_obj_type_t type,

const char *x subtype,

const char * nameprefix,

unsigned long flags)
Return an object of a different type with same locality.
If the source object src is a normal or memory type, this function returns an object of type t ype with same CPU
and node sets, either below or above in the hierarchy.
If the source object src is a PCl or an OS device within a PCI device, the function may either return that PCI device,
or another OS device in the same PCI parent. This may for instance be useful for converting between OS devices
such as "nvml0" or "rsmi1" used in distance structures into the the PCI device, or the CUDA or OpenCL OS device
that correspond to the same physical card.
If not NULL, parameter subtype only select objects whose subtype attribute exists and is subtype (case-
insensitively), for instance "OpenCL" or "CUDA".
If not NULL, parameter nameprefix only selects objects whose name attribute exists and starts with
nameprefix (case-insensitively), for instance "rsmi" for matching "rsmi0".
If multiple objects match, the first one is returned.
This function will not walk the hierarchy across bridges since the PCI locality may become different. This function
cannot also convert between normal/memory objects and I/O or Misc objects.
flags must be O for now.

Returns

An object with identical locality, matching subt ype and nameprefix if any.

NULL if no matching object could be found, or if the source object and target type are incompatible, for
instance if converting between CPU and 1/O objects.

23.20.2.7 hwloc_get_pu_obj_by_ os_index()

hwloc_obj_t hwloc_get_pu_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_PU with os_index.
This function is useful for converting a CPU set into the PU objects it contains. When retrieving the cur-
rent binding (e.g. with hwloc_get_cpubind()), one may iterate over the bits of the resulting CPU set with
hwloc_bitmap_foreach_begin(), and find the corresponding PUs with this function.

Returns

the PU object, or NULL if none matches.

23.21 Distributing items over a topology

Enumerations

» enum hwloc_distrib_flags_e { HWLOC_DISTRIB_FLAG_REVERSE }

Generated by Doxygen

23.22 CPU and node sets of entire topologies 145

Functions
« int hwloc_distrib (hwloc_topology_t topology, hwloc_obj_t xroots, unsigned n_roots, hwloc_cpuset_t xset,
unsigned n, int until, unsigned long flags)
23.21.1 Detailed Description
23.21.2 Enumeration Type Documentation
23.21.2.1 hwloc_distrib_flags_e

enum hwloc_distrib_flags_e
Flags to be given to hwloc_distrib().

Enumerator

‘ HWLOC_DISTRIB_FLAG_REVERSE ‘ Distrib in reverse order, starting from the last objects.

23.21.3 Function Documentation
23.21.3.1 hwloc_distrib()

int hwloc_distrib (

hwloc_topology_t topology,

hwloc_obj_t * roots,

unsigned n_roots,

hwloc_cpuset_t * set,

unsigned n,

int until,

unsigned long flags) [inline]
Distribute n items over the topology under roots.
Array set will be filled with n cpusets recursively distributed linearly over the topology under objects root s, down
to depth unt i1 (which can be INT_MAX to distribute down to the finest level).
n_rootsisusually 1 and root s only contains the topology root object so as to distribute over the entire topology.
This is typically useful when an application wants to distribute n threads over a machine, giving each of them as
much private cache as possible and keeping them locally in number order.
The caller may typically want to also call hwloc_bitmap_singlify() before binding a thread so that it does not move at
all.
flags should be 0 or a OR'ed set of hwloc_distrib_flags_e.

Returns

0 on success, -1 on error.

Note

On hybrid CPUs (or asymmetric platforms), distribution may be suboptimal since the number of cores or PUs
inside packages or below caches may vary (the top-down recursive partitioning ignores these numbers until
reaching their levels). Hence it is recommended to distribute only inside a single homogeneous domain.
For instance on a CPU with energy-efficient E-cores and high-performance P-cores, one should distribute
separately N tasks on E-cores and M tasks on P-cores instead of trying to distribute directly M+N tasks on the
entire CPUs.

This function requires the root s objects to have a CPU set.

23.22 CPU and node sets of entire topologies

Functions

» hwloc_const_cpuset_t hwloc_topology_get _complete_cpuset (hwloc_topology_t topology)

Generated by Doxygen

146 Topic Documentation

» hwloc_const_cpuset_t hwloc_topology_get topology_cpuset (hwloc_topology_t topology)

» hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology)

» hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t topology)

23.22.1 Detailed Description

23.22.2 Function Documentation
23.22.2.1 hwloc_topology_get_allowed_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (

hwloc_topology_t topology)
Get allowed CPU set.

Returns

the CPU set of allowed processors of the system.

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology_cpuset(), which means all PUs are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on
the result of this function and on an object cpuset checks whether there are allowed PUs inside that object.
Applying hwloc_bitmap_and() returns the list of these allowed PUs.

The returned cpuset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup()
must be used to obtain a local copy.

23.22.2.2 hwloc_topology_get_allowed_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (
hwloc_topology_t topology)
Get allowed node set.

Returns

the node set of allowed memory of the system.

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology_nodeset(), which means all NUMA nodes are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on
the result of this function and on an object nodeset checks whether there are allowed NUMA nodes inside that
object. Applying hwloc_bitmap_and() returns the list of these allowed NUMA nodes.

The returned nodeset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup()
must be used to obtain a local copy.

23.22.2.3 hwloc_topology_get_complete_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (
hwloc_topology_t topology)
Get complete CPU set.

Generated by Doxygen

23.22 CPU and node sets of entire topologies 147

Returns

the complete CPU set of processors of the system.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup()
must be used to obtain a local copy.

This is equivalent to retrieving the root object complete CPU-set.

23.22.2.4 hwloc_topology_get_complete_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (
hwloc_topology_t topology)
Get complete node set.

Returns

the complete node set of memory of the system.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup()
must be used to obtain a local copy.

This is equivalent to retrieving the root object complete nodeset.

23.22.2.5 hwloc_topology_get_topology_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (
hwloc_topology_t topology)
Get topology CPU set.

Returns

the CPU set of processors of the system for which hwloc provides topology information. This is equivalent to
the cpuset of the system object.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup()
must be used to obtain a local copy.

This is equivalent to retrieving the root object CPU-set.

23.22.2.6 hwloc_topology_get_topology nodeset()

hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (
hwloc_topology_t topology)
Get topology node set.

Returns

the node set of memory of the system for which hwloc provides topology information. This is equivalent to the
nodeset of the system object.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup()
must be used to obtain a local copy.

This is equivalent to retrieving the root object nodeset.

Generated by Doxygen

148 Topic Documentation

23.23 Converting between CPU sets and node sets

Functions

« int hwloc_cpuset_to_nodeset (hwloc_topology_t topology, hwloc_const_cpuset_t _cpuset, hwloc_nodeset_t
nodeset)

+ int hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t _cpuset, hwloc_const_nodeset_t
nodeset)

23.23.1 Detailed Description

23.23.2 Function Documentation
23.23.2.1 hwloc_cpuset_from_nodeset()

int hwloc_cpuset_from_nodeset (
hwloc_topology_t topology,
hwloc_cpuset_t _cpuset,
hwloc_const_nodeset_t nodeset) [inline]
Convert a NUMA node set into a CPU set.
For each NUMA node included in the input nodeset, set the corresponding local PUs in the output _cpuset.
If some CPUs have no local NUMA nodes, this function never sets their indexes in the output CPU set, even if a full
node set is given in input.
Hence the entire topology node set is converted into the set of all CPUs that have some local NUMA nodes.

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

23.23.2.2 hwloc_cpuset_to_nodeset()

int hwloc_cpuset_to_nodeset (
hwloc_topology_t topology,
hwloc_const_cpuset_t _cpuset,

hwloc_nodeset_t nodeset) [inline]
Convert a CPU set into a NUMA node set.
For each PU included in the input _cpuset, set the corresponding local NUMA node(s) in the output nodeset.
If some NUMA nodes have no CPUs at all, this function never sets their indexes in the output node set, even if a full
CPU set is given in input.
Hence the entire topology CPU set is converted into the set of all nodes that have some local CPUs.

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

23.24 Finding I/O objects

Functions

» hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_topology_t topology, hwloc_obj_t ioobj)

» hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_pcidev_by_busid (hwloc_topology_t topology, unsigned domain, unsigned bus, un-
signed dev, unsigned func)

» hwloc_obj_t hwloc_get pcidev_by_busidstring (hwloc_topology_t topology, const char xbusid)

» hwloc_obj_t hwloc_get next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get next_bridge (hwloc_topology_t topology, hwloc_obj_t prev)

« int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned bus)

Generated by Doxygen

23.24 Finding I/O objects

149

23.24.1 Detailed Description

23.24.2 Function Documentation
23.24.2.1 hwloc_bridge_covers_pcibus()

int hwloc_bridge_covers_pcibus (
hwloc_obj_t bridge,
unsigned domain,

unsigned bus) [inline]

23.24.2.2 hwloc_get_next_bridge()

hwloc_obj_t hwloc_get_next_bridge (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next bridge in the system.

Returns

the first bridge if prev is NULL.
the next bridge if prev is not NULL.
NULL if there is no next bridge.

23.24.2.3 hwloc_get_next_osdev()

hwloc_obj_t hwloc_get_next_osdev (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next OS device in the system.

Returns

the first OS device if prev is NULL.
the next OS device if prev is not NULL.
NULL if there is no next OS device.

23.24.2.4 hwloc_get_next_pcidev()

hwloc_obj_t hwloc_get_next_pcidev (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next PCI device in the system.

Returns
the first PCI device if prev is NULL.

the next PCl device if prev is not NULL.

NULL if there is no next PCI device.

23.24.2.5 hwloc_get_non_io_ancestor_obij()

hwloc_obj_t hwloc_get_non_io_ancestor_obj
hwloc_topology_t topology,
hwloc_obj_t ioobj) [inline]
Get the first non-I/O ancestor object.

Given the 1/0O object ioob7j, find the smallest non-I/O ancestor object. This object (normal or memory) may then
be used for binding because it has non-NULL CPU and node sets and because its locality is the same as ioob7j.

Generated by Doxygen

150 Topic Documentation

Returns

a non-1/O object.

Note

This function cannot return NULL.

The resulting object is usually a normal object but it could also be a memory object (e.g. NUMA node) in future
platforms if I/O objects ever get attached to memory instead of CPUs.

23.24.2.6 hwloc_get_pcidev_by busid()

hwloc_obj_t hwloc_get_pcidev_by_busid (
hwloc_topology_t topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func) [inline]
Find the PCI device object matching the PCI bus id given domain, bus device and function PCI bus id.

Returns

a matching PCI device object if any, NULL otherwise.

23.24.2.7 hwloc_get_pcidev_by busidstring()

hwloc_obj_t hwloc_get_pcidev_by_busidstring (
hwloc_topology_t topology,
const char *x busid) [inline]
Find the PCI device object matching the PCI bus id given as a string xxxx:yy:zz.t or yy:zz.t.

Returns

a matching PCI device object if any, NULL otherwise.

23.25 The bitmap API

Macros

« #define hwloc_bitmap_foreach_begin(id, bitmap)
+ #define hwloc_bitmap_foreach_end()

Typedefs

« typedef struct hwloc_bitmap_s * hwloc_bitmap_t
* typedef const struct hwloc_bitmap_s * hwloc_const_bitmap_t

Functions

 hwloc_bitmap_t hwloc_bitmap_alloc (void)

» hwloc_bitmap_t hwloc_bitmap_alloc_full (void)

« void hwloc_bitmap_free (hwloc_bitmap_t bitmap)

» hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)

« int hwloc_bitmap_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_asprintf (char *xstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_list_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
« int hwloc_bitmap_list_asprintf (char *xstrp, hwloc_const_bitmap_t bitmap)

Generated by Doxygen

23.25 The bitmap API 151

« int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_taskset_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_taskset_asprintf (char xxstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)

« void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)

« int hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)

« int hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_from_ulongs (hwloc_bitmap_t bitmap, unsigned nr, const unsigned long xmasks)

« int hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_set range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_singlify (hwloc_bitmap_t bitmap)

« unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)

 unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)

+ int hwloc_bitmap_to_ulongs (hwloc_const_bitmap_t bitmap, unsigned nr, unsigned long xmasks)

« int hwloc_bitmap_nr_ulongs (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)

* int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first_unset (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next_unset (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last_unset (hwloc_const_bitmap_t bitmap)

+ int hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

« int hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t
bitmap2)

« int hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

« int hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_bitmap)

« int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

23.25.1 Detailed Description

The hwloc_bitmap_t type represents a set of integers (positive or null). A bitmap may be of infinite size (all bits are
set after some point). A bitmap may even be full if all bits are set.

Bitmaps are used by hwloc for sets of OS processors (which may actually be hardware threads) as by
hwloc_cpuset_t (a typedef for hwloc_bitmap_t), or sets of NUMA memory nodes as hwloc_nodeset t (also a
typedef for hwloc_bitmap_t). Those are used for cpuset and nodeset fields in the hwloc_obj structure, see
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t).

Both CPU and node sets are always indexed by OS physical number. However users should usually not build CPU
and node sets manually (e.g. with hwloc_bitmap_set()). One should rather use existing object sets and combine
them with hwloc_bitmap_or(), etc. For instance, binding the current thread on a pair of cores may be performed
with:

hwloc_obj_t corel = ... , core2 = ... ;

hwloc_bitmap_t set = hwloc_bitmap_alloc();
hwloc_bitmap_or (set, corel->cpuset, core2->cpuset);
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD) ;
hwloc_bitmap_free (set);

Generated by Doxygen

152 Topic Documentation

Note

Most functions below return 0 on success and -1 on error. The usual error case would be an in-
ternal failure to realloc/extend the storage of the bitmap (errno would be set to ENOMEM). See also
Error reporting in the API.

Several examples of using the bitmap API are available under the doc/examples/ directory in the source tree.
Regression tests such as tests/hwloc/hwloc_bitmap:.c also make intensive use of this API.

23.25.2 Macro Definition Documentation
23.25.2.1 hwloc_bitmap_foreach_begin

#define hwloc_bitmap_foreach_begin (

id,

bitmap)
Loop macro iterating on bitmap bitmap.
The loop must start with hwloc_bitmap_foreach_begin() and end with hwloc_bitmap_foreach_end() followed by a
terminating ';'.
id is the loop variable; it should be an unsigned int. The first iteration will set 1d to the lowest index in the bitmap.
Successive iterations will iterate through, in order, all remaining indexes set in the bitmap. To be specific: each
iteration will return a value for id such that hwloc_bitmap_isset(bitmap, id) is true.
The assert prevents the loop from being infinite if the bitmap is infinitely set.

23.25.2.2 hwloc_bitmap_foreach_end

#define hwloc_bitmap_foreach_end()
End of loop macro iterating on a bitmap.
Needs a terminating ';'.

See also

hwloc_bitmap_foreach_begin()

23.25.3 Typedef Documentation

23.25.3.1 hwloc_bitmap_t

typedef struct hwloc_bitmap_s* hwloc_bitmap_t

Set of bits represented as an opaque pointer to an internal bitmap.
23.25.3.2 hwloc_const_bitmap_t

typedef const struct hwloc_bitmap_s* hwloc_const_bitmap_t
a non-modifiable hwloc_bitmap_t

23.25.4 Function Documentation
23.25.4.1 hwloc_bitmap_allbut()

int hwloc_bitmap_allbut (
hwloc_bitmap_t bitmap,
unsigned id)

Fill the bitmap and clear the index id.

23.25.4.2 hwloc_bitmap_alloc()

hwloc_bitmap_t hwloc_bitmap_alloc (
void)
Allocate a new empty bitmap.

Generated by Doxygen

23.25 The bitmap API

153

Returns

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

23.25.4.3 hwloc_bitmap_alloc_full()

hwloc_bitmap_t hwloc_bitmap_alloc_full (
void)
Allocate a new full bitmap.

Returns

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

23.25.4.4 hwloc_bitmap_and()

int hwloc_bitmap_and (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
And bitmaps bitmapl and bitmap?2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.5 hwloc_bitmap_andnot()

int hwloc_bitmap_andnot (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

And bitmap bitmapl and the negation of bitmap2 and store the result in bitmap res.

res can be the same as bitmapl or bitmap2

23.25.4.6 hwloc_bitmap_asprintf()

int hwloc_bitmap_asprintf (

char *x strp,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated string in the default hwloc format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.

Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits

1,33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002".

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

23.25.4.7 hwloc_bitmap_clr()

int hwloc_bitmap_clr (
hwloc_bitmap_t bitmap,
unsigned id)

Remove index id from bitmap bitmap.

Generated by Doxygen

154 Topic Documentation

23.25.4.8 hwloc_bitmap_clr_range()

int hwloc_bitmap_clr_range (

hwloc_bitmap_t bitmap,

unsigned begin,

int end)
Remove indexes from begin to end in bitmap bitmap.
If end is -1, the range is infinite.

23.25.4.9 hwloc_bitmap_compare()

int hwloc_bitmap_compare (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 in lexicographic order.
Lexicographic comparison of bitmaps, starting for their highest indexes. Compare last indexes first, then second,
etc. The empty bitmap is considered lower than anything.

Returns
-1if bitmapl is considered smaller than bitmap?2.
1ifbitmapl is considered larger than bitmap?2.
0 if bitmaps are equal (contrary to hwloc_bitmap_compare_first()).

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110).
Comparing 00101 and 01010 returns -1 too.

Note

This is different from the non-existing hwloc_bitmap_compare_last() which would only compare the highest
index of each bitmap.

23.25.4.10 hwloc_bitmap_compare_first()

int hwloc_bitmap_compare_first (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 using their lowest index.
A bitmap is considered smaller if its least significant bit is smaller. The empty bitmap is considered higher than
anything (because its least significant bit does not exist).

Returns

-1 if bitmapl is considered smaller than bitmap?2.
1ifbitmapl is considered larger than bitmap?2.

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110)
because least significant bit of 0011 (0001) is smaller than least significant bit of 0110 (0010). Comparing 01001
and 00110 would also return -1 for the same reason.

Returns

0 if bitmaps are considered equal, even if they are not strictly equal. They just need to have the same least
significant bit. For instance, comparing binary bitmaps 0010 and 0110 returns 0 because they have the same
least significant bit.

23.25.4.11 hwloc_bitmap_copy()

int hwloc_bitmap_copy (
hwloc_bitmap_t dst,
hwloc_const_bitmap_t src)
Copy the contents of bitmap src into the already allocated bitmap dst.

Generated by Doxygen

23.25 The bitmap API 155

23.25.4.12 hwloc_bitmap_dup()

hwloc_bitmap_t hwloc_bitmap_dup (

hwloc_const_bitmap_t bitmap)
Duplicate bitmap bitmap by allocating a new bitmap and copying bitmap contents.
If bitmap is NULL, NULL is returned.

23.25.4.13 hwloc_bitmap_fill()

void hwloc_bitmap_fill (
hwloc_bitmap_t bitmap)
Fill bitmap bitmap with all possible indexes (even if those objects don't exist or are otherwise unavailable)

23.25.4.14 hwloc_bitmap_first()

int hwloc_bitmap_first (
hwloc_const_bitmap_t bitmap)
Compute the first index (least significant bit) in bitmap bitmap.

Returns

the first index set in bitmap.

-1 if bitmap is empty.

23.25.4.15 hwloc_bitmap_first_unset()

int hwloc_bitmap_first_unset (
hwloc_const_bitmap_t bitmap)
Compute the first unset index (least significant bit) in bitmap bitmap.

Returns

the first unset index in bitmap.

-1 if bitmap is full.

23.25.4.16 hwloc_bitmap_free()

void hwloc_bitmap_free (

hwloc_bitmap_t bitmap)
Free bitmap bitmap.
If bitmap is NULL, no operation is performed.

23.25.4.17 hwloc_bitmap_from_ith_ulong()

int hwloc_bitmap_from_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned i,
unsigned long mask)
Setup bitmap bitmap from unsigned long ma sk used as i -th subset.

23.25.4.18 hwloc_bitmap_from_ulong()

int hwloc_bitmap_from_ulong (
hwloc_bitmap_t bitmap,
unsigned long mask)

Setup bitmap bitmap from unsigned long mask.

Generated by Doxygen

156 Topic Documentation

23.25.4.19 hwloc_bitmap_from_ulongs()

int hwloc_bitmap_from_ulongs (
hwloc_bitmap_t bitmap,
unsigned nr,
const unsigned long * masks
Setup bitmap bitmap from unsigned longs masks used as first nr subsets.

23.25.4.20 hwloc_bitmap_intersects()

int hwloc_bitmap_intersects (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmaps bitmapl and bitmap?2 intersects.

Returns

1 if bitmaps intersect, 0 otherwise.

Note

The empty bitmap does not intersect any other bitmap.

23.25.4.21 hwloc_bitmap_isequal()

int hwloc_bitmap_isequal (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmap bitmapl is equal to bitmap bitmap2.

Returns

1 if bitmaps are equal, 0 otherwise.

23.25.4.22 hwloc_bitmap_isfull()

int hwloc_bitmap_isfull (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is completely full.

Returns

1 if bitmap is full, 0 otherwise.

Note

A full bitmap is always infinitely set.

23.25.4.23 hwloc_bitmap_isincluded()

int hwloc_bitmap_isincluded (
hwloc_const_bitmap_t sub_bitmap,
hwloc_const_bitmap_t super_bitmap)

Test whether bitmap sub_bitmap is part of bitmap super_bitmap.

Returns

1if sub_bitmap isincluded in super_bitmap, 0 otherwise.

Note

The empty bitmap is considered included in any other bitmap.

Generated by Doxygen

23.25 The bitmap API 157

23.25.4.24 hwloc_bitmap_isset()

int hwloc_bitmap_isset (
hwloc_const_bitmap_t bitmap,
unsigned id)

Test whether index 1d is part of bitmap bitmap.

Returns

1 if the bit at index id is set in bitmap bitmap, 0 otherwise.

23.25.4.25 hwloc_bitmap_iszero()

int hwloc_bitmap_iszero (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is empty.

Returns

1 if bitmap is empty, 0 otherwise.

23.25.4.26 hwloc_bitmap_last()

int hwloc_bitmap_last (
hwloc_const_bitmap_t bitmap)
Compute the last index (most significant bit) in bitmap bitmap.

Returns

the last index set in bitmap.

-1if bitmap is empty, or if bitmap is infinitely set.

23.25.4.27 hwloc_bitmap_last_unset()

int hwloc_bitmap_last_unset (
hwloc_const_bitmap_t bitmap)
Compute the last unset index (most significant bit) in bitmap bitmap.

Returns

the last index unset in bitmap.

-1 if bitmap is full, or if bitmap is not infinitely set.

23.25.4.28 hwloc_bitmap_list_asprintf()

int hwloc_bitmap_list_asprintf (

char *x strp,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated list string.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33,
34, and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the
bitmap is infinitely set.

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

Generated by Doxygen

158 Topic Documentation

23.25.4.29 hwloc_bitmap_list_snprintf()

int hwloc_bitmap_list_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the list format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33,
34, and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the
bitmap is infinitely set.
Up to buflen characters may be written in buffer buf.
Ifbuflenis 0, buf may safely be NULL.

Returns
the number of characters that were actually written if not truncating, or that would have been written (not
including the ending \ 0).
-1 on error.

23.25.4.30 hwloc_bitmap_list_sscanf()

int hwloc_bitmap_list_sscanf (

hwloc_bitmap_t bitmap,

const char xrestrict string)
Parse a list string and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. String "1, 33-34, 64-95"
is parsed as a bitmap containing bits 1, 33, 34, and all from 64 to 95. The last range may not have an ending index
if the bitmap is infinitely set.

Returns

0 on success, -1 on error.

23.25.4.31 hwloc_bitmap_next()

int hwloc_bitmap_next (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next index in bitmap bitmap which is after index prev.

Returns

the first index set in bitmap if previs - 1.
the next index set in bitmap if previs not —1.
-1 if no index with higher index is set in bitmap.

23.25.4.32 hwloc_bitmap_next_unset()

int hwloc_bitmap_next_unset (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next unset index in bitmap bitmap which is after index prev.

Returns
the first index unset in bitmap if previs -1.
the next index unset in bitmap if previs not —-1.

-1 if no index with higher index is unset in bitmap.

Generated by Doxygen

23.25 The bitmap API 159

23.25.4.33 hwloc_bitmap_not()

int hwloc_bitmap_not (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmap)
Negate bitmap bitmap and store the result in bitmap res.
res can be the same as bitmap

23.25.4.34 hwloc_bitmap_nr_ulongs()

int hwloc_bitmap_nr_ulongs (

hwloc_const_bitmap_t bitmap)
Return the number of unsigned longs required for storing bitmap bitmap entirely.
This is the number of contiguous unsigned longs from the very first bit of the bitmap (even if unset) up to the
last set bit. This is useful for knowing the nr parameter to pass to hwloc_bitmap_to_ulongs() (or which calls to
hwloc_bitmap_to_ith_ulong() are needed) to entirely convert a bitmap into multiple unsigned longs.
When called on the output of hwloc_topology_get_topology_cpuset(), the returned number is large enough for all
cpusets of the topology.

Returns

the number of unsigned longs required.
-1 if bitmap is infinite.

23.25.4.35 hwloc_bitmap_only()

int hwloc_bitmap_only (
hwloc_bitmap_t bitmap,
unsigned id)

Empty the bitmap bitmap and add bit 1d.

23.25.4.36 hwloc_bitmap_or()

int hwloc_bitmap_or (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Or bitmaps bitmapl and bitmap?2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.37 hwloc_bitmap_set()

int hwloc_bitmap_set (
hwloc_bitmap_t bitmap,
unsigned id)

Add index id in bitmap bitmap.

23.25.4.38 hwloc_bitmap_set_ith_ulong()

int hwloc_bitmap_set_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned 1,
unsigned long mask)
Replace i -th subset of bitmap bitmap with unsigned long mask.

23.25.4.39 hwloc_bitmap_set_range()

int hwloc_bitmap_set_range (

hwloc_bitmap_t bitmap,

Generated by Doxygen

160 Topic Documentation

unsigned begin,

int end)
Add indexes from begin to end in bitmap bitmap.
If end is —1, the range is infinite.

23.25.4.40 hwloc_bitmap_singlify()

int hwloc_bitmap_singlify (

hwloc_bitmap_t bitmap)
Keep a single index among those set in bitmap bitmap.
May be useful before binding so that the process does not have a chance of migrating between multiple processors
in the original mask. Instead of running the task on any PU inside the given CPU set, the operating system scheduler
will be forced to run it on a single of these PUs. It avoids a migration overhead and cache-line ping-pongs between
PUs.

Note

This function is NOT meant to distribute multiple processes within a single CPU set. It always return the same
single bit when called multiple times on the same input set. hwloc_distrib() may be used for generating CPU
sets to distribute multiple tasks below a single multi-PU object.

This function cannot be applied to an object set directly. It should be applied to a copy (which may be obtained
with hwloc_bitmap_dup()).

23.25.4.41 hwloc_bitmap_snprintf()

int hwloc_bitmap_snprintf (
char *xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the default hwloc format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits
1,33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002".
Up to buflen characters may be written in buffer buf.
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not
including the ending \ 0).

-1 on error.

23.25.4.42 hwloc_bitmap_sscanf()

int hwloc_bitmap_sscanf (
hwloc_bitmap_t bitmap,
const char *restrict string)
Parse a bitmap string as the default hwloc format and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
The input string should be a comma-separared list of hexadecimal 32-bit blocks. String "Oxffffffff, 0x6, 0x2"
is parsed as a bitmap containing all bits between 64 and 95, and bits 33, 34 and 1.

Returns

0 on success, -1 on error.

Generated by Doxygen

23.25 The bitmap API 161

23.25.4.43 hwloc_bitmap_taskset_asprintf()

int hwloc_bitmap_taskset_asprintf (

char **x strp,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated taskset-specific string.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadeci-
mal number starting with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printed as
"Oxff£E£££££0000000600000002"M.

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

23.25.4.44 hwloc_bitmap_taskset_snprintf()

int hwloc_bitmap_taskset_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the taskset-specific format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadeci-
mal number starting with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printed as
"Oxfff£££££0000000600000002M.
Up to buflen characters may be written in buffer buf.
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not
including the ending \ 0).

-1 on error.

23.25.4.45 hwloc_bitmap_taskset_sscanf()

int hwloc_bitmap_taskset_sscanf (

hwloc_bitmap_t bitmap,

const char *restrict string)
Parse a taskset-specific bitmap string and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number
starting with Ox. String "Oxffff£f£f££0000000600000002" is parsed as a bitmap containing all bits between
64 and 95, and bits 33, 34 and 1.

Returns

0 on success, -1 on error.

23.25.4.46 hwloc_bitmap_to_ith_ulong()

unsigned long hwloc_bitmap_to_ith_ulong (
hwloc_const_bitmap_t bitmap,
unsigned 1)

Convert the 1 -th subset of bitmap bitmap into unsigned long mask.

Generated by Doxygen

162 Topic Documentation

23.25.4.47 hwloc_bitmap_to_ulong()

unsigned long hwloc_bitmap_to_ulong (
hwloc_const_bitmap_t bitmap)
Convert the beginning part of bitmap bitmap into unsigned long mask.

23.25.4.48 hwloc_bitmap_to_ulongs()

int hwloc_bitmap_to_ulongs (

hwloc_const_bitmap_t bitmap,

unsigned nr,

unsigned long * masks)
Convert the first nr subsets of bitmap bitmap into the array of nr unsigned long masks.
nr may be determined earlier with hwloc_bitmap_nr_ulongs().

Returns

0

23.25.4.49 hwloc_bitmap_weight()

int hwloc_bitmap_weight (
hwloc_const_bitmap_t bitmap)
Compute the "weight" of bitmap bitmap (i.e., number of indexes that are in the bitmap).

Returns

the number of indexes that are in the bitmap.

-1 if bitmap is infinitely set.

23.25.4.50 hwloc_bitmap_xor()

int hwloc_bitmap_xor (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmapZ2)
Xor bitmaps bitmapl and bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.51 hwloc_bitmap_zero()

void hwloc_bitmap_zero (
hwloc_bitmap_t bitmap)
Empty the bitmap bitmap.

23.26 Exporting Topologies to XML

Enumerations

» enum hwloc_topology_export_xml_flags_e { HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1}

Functions

« int hwloc_topology_export_xml (hwloc_topology_t topology, const char «xmlpath, unsigned long flags)

« int hwloc_topology_export_xmlibuffer (hwloc_topology_t topology, char xxxmlbuffer, int xbuflen, unsigned long
flags)

« void hwloc_free_xmlbuffer (hwloc_topology_t topology, char xxmibuffer)

» void hwloc_topology_set_userdata_export_callback (hwloc_topology t topology, void(xexport_cb)(void
xreserved, hwloc_topology_t topology, hwloc_obj_t obj))

Generated by Doxygen

23.26 Exporting Topologies to XML 163

« int hwloc_export_obj_userdata (void xreserved, hwloc_topology t topology, hwloc_obj_t obj, const char
xname, const void xbuffer, size_t length)

« int hwloc_export_obj_userdata_base64 (void xreserved, hwloc_topology t topology, hwloc_obj_t obj, const
char xname, const void xbuffer, size_t length)

+ void hwloc_topology_set _userdata_import_callback (hwloc_topology_t topology, void(ximport_cb)(hwloc_topology_t
topology, hwloc_obj_t obj, const char xname, const void xbuffer, size_t length))

23.26.1 Detailed Description

23.26.2 Enumeration Type Documentation
23.26.2.1 hwloc_topology_export_xmli_flags_e

enum hwloc_topology_export_xml_flags_e
Flags for exporting XML topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_xml().

Enumerator

HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 | Export XML that is loadable by hwloc v1.x. However,
the export may miss some details about the topology.

23.26.3 Function Documentation
23.26.3.1 hwloc_export_obj_userdata()

int hwloc_export_obj_userdata (

void x reserved,

hwloc_topology_t topology,

hwloc_obj_t obj,

const char * name,

const void x buffer,

size_t length)
Export some object userdata to XML.
This function may only be called from within the export() callback passed to hwloc_topology_set_userdata_export_callback().
It may be invoked one of multiple times to export some userdata to XML. The buffer content of length 1ength
is stored with optional name name.
When importing this XML file, the import() callback (if set) will be called exactly as many times as
hwloc_export_obj_userdata() was called during export(). It will receive the corresponding name, buffer and
length arguments.
reserved, topology and obj must be the first three parameters that were given to the export callback.
Only printable characters may be exported to XML string attributes.
If exporting binary data, the application should first encode into printable characters only (or use hwloc_export_obj_userdata_base64()
It should also take care of portability issues if the export may be reimported on a different architecture.

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name or buffer.

23.26.3.2 hwloc_export_obj_userdata_base64()

int hwloc_export_obj_userdata_base64 (
void * reserved,
hwloc_topology_t topology,
hwloc_obj_t obj,

const char *x name,

Generated by Doxygen

164 Topic Documentation

const void *x buffer,
size_t length)
Encode and export some object userdata to XML.
This function is similar to hwloc_export_obj_userdata() but it encodes the input buffer into printable characters
before exporting. On import, decoding is automatically performed before the data is given to the import() callback if
any.
This function may only be called from within the export() callback passed to hwloc_topology_set_userdata_export_callback().
The name must be made of printable characters for export to XML string attributes.
The function does not take care of portability issues if the export may be reimported on a different architecture.

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name.

23.26.3.3 hwloc_free_xmlbuffer()

void hwloc_free_xmlbuffer (
hwloc_topology_t topology,
char * xmlbuffer)
Free a buffer allocated by hwloc_topology_export_xmlbuffer()

23.26.3.4 hwloc_topology_export_xml()

int hwloc_topology_export_xml (

hwloc_topology_t topology,

const char * xmlpath,

unsigned long flags)
Export the topology into an XML file.
This file may be loaded later through hwloc_topology_set_xml().
By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import
it. Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1
but it may miss some details about the topology. If there is any chance that the exported file may ever be imported
back by a process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export
format.
flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Note

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-
ASCII character, will be silently dropped.

If name is "-", the XML output is sent to the standard output.

23.26.3.5 hwloc_topology_export_xmlbuffer()

int hwloc_topology_export_xmlbuffer (
hwloc_topology_t topology,
char *xx xmlbuffer,
int * buflen,
unsigned long flags)
Export the topology into a newly-allocated XML memory buffer.
xmlbuffer is allocated by the callee and should be freed with hwloc_free_xmlbuffer() later in the caller.

Generated by Doxygen

23.26 Exporting Topologies to XML 165

This memory buffer may be loaded later through hwloc_topology_set_xmibuffer().

By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import it.
Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 but
it may miss some details about the topology. If there is any chance that the exported buffer may ever be imported
back by a process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export
format.

The returned buffer ends with a \0 that is included in the returned length.

flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Note

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-
ASCII character, will be silently dropped.

23.26.3.6 hwloc_topology_set_userdata_export_callback()

void hwloc_topology_set_userdata_export_callback (

hwloc_topology_t topology,

void (%) (void #*reserved, hwloc_topology_t topology, hwloc_obj_t obj) export_cb)
Set the application-specific callback for exporting object userdata.
The object userdata pointer is not exported to XML by default because hwloc does not know what it contains.
This function lets applications set export_cb to a callback function that converts this opaque userdata into an
exportable string.
export_cb is invoked during XML export for each object whose userdata pointer is not NULL. The callback
should use hwloc_export_obj_userdata() or hwloc_export_obj_userdata_base64() to actually export something to
XML (possibly multiple times per object).
export_cb may be set to NULL if userdata should not be exported to XML.

Note

The topology-specific userdata pointer is ignored when exporting to XML.

23.26.3.7 hwloc_topology_set_userdata_import_callback()

void hwloc_topology_set_userdata_import_callback (

hwloc_topology_t topology,

void (*) (hwloc_topology_t topology, hwloc_obj_t obj, const char *name, const void
sbuffer, size_t length) import_cb)
Set the application-specific callback for importing userdata.
On XML import, userdata is ignored by default because hwloc does not know how to store it in memory.
This function lets applications set import_cb to a callback function that will get the XML-stored userdata and
store it in the object as expected by the application.
import_cb is called during hwloc_topology load() as many times as hwloc_export_obj userdata() was called
during export. The topology is not entirely setup yet. Object attributes are ready to consult, but links between
objects are not.
import_cb may be NULL if userdata should be ignored during import.

Note

buffer contains length characters followed by a null byte (\0').
This function should be called before hwloc_topology_load().

The topology-specific userdata pointer is ignored when importing from XML.

Generated by Doxygen

166 Topic Documentation

23.27 Exporting Topologies to Synthetic

Enumerations

» enum hwloc_topology_export_synthetic_flags_e { HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_TY
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_\
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY }
Functions
« int hwloc_topology_export_synthetic (hwloc_topology_t topology, char xbuffer, size_t buflen, unsigned long

flags)

23.27.1 Detailed Description

23.27.2 Enumeration Type Documentation
23.27.2.1 hwloc_topology_export_synthetic_flags_e

enum hwloc_topology_export_synthetic_flags_e
Flags for exporting synthetic topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_synthetic().

Enumerator

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_+« | Export extended types such as L2dcache as basic
FLAG_NO_EXTENDED_TYPES | types such as Cache. This is required if loading the
synthetic description with hwloc < 1.9.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_« | Do not export level attributes. Ignore level attributes
FLAG_NO_ATTRS | such as memory/cache sizes or PU indexes. This is
required if loading the synthetic description with hwloc
< 1.10.
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_+« | Export the memory hierarchy as expected in hwloc
FLAG_V1 | 1.x. Instead of attaching memory children to levels,
export single NUMA node child as normal
intermediate levels, when possible. This is required if
loading the synthetic description with hwloc 1.x.
However this may fail if some objects have multiple
local NUMA nodes.
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_+« | Do not export memory information. Only export the
FLAG_IGNORE_MEMORY | actual hierarchy of normal CPU-side objects and
ignore where memory is attached. This is useful for
when the hierarchy of CPUs is what really matters, but
it behaves as if there was a single machine-wide
NUMA node.

23.27.3 Function Documentation
23.27.3.1 hwloc_topology_export_synthetic()

int hwloc_topology_export_synthetic (
hwloc_topology_t topology,
char * buffer,
size_t buflen,
unsigned long flags)
Export the topology as a synthetic string.
At most buflen characters will be written in buf fer, including the terminating \0.
This exported string may be given back to hwloc_topology_set_synthetic().
flags is a OR'ed set of hwloc_topology_export_synthetic_flags_e.

Generated by Doxygen

23.28 Retrieve distances between objects 167

Returns

The number of characters that were written, not including the terminating \0.

-1 if the topology could not be exported, for instance if it is not symmetric.

Note

I/O and Misc children are ignored, the synthetic string only describes normal children.

A 1024-byte buffer should be large enough for exporting topologies in the vast majority of cases.

23.28 Retrieve distances between objects

Data Structures

 struct hwloc_distances_s

Enumerations

» enum hwloc_distances_kind_e {
HWLOC_DISTANCES_KIND_FROM_OS , HWLOC_DISTANCES_KIND_FROM_USER , HWLOC_DISTANCES_KIND_MEAN
, HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH ,
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES }

» enum hwloc_distances_transform_e { HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL , HWLOC_DISTANCES_TRANS
, HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS , HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CL
1

Functions

« int hwloc_distances_get (hwloc_topology_t topology, unsigned xnr, struct hwloc_distances_s xxdistances,
unsigned long kind, unsigned long flags)

« inthwloc_distances_get_by_depth (hwloc_topology_t topology, int depth, unsigned xnr, struct hwloc_distances_s
xxdistances, unsigned long kind, unsigned long flags)

+ int hwloc_distances_get_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long kind, unsigned long flags)

« int hwloc_distances_get_by name (hwloc_topology_t topology, const char xname, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long flags)

» const char x hwloc_distances_get_name (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

« void hwloc_distances_release (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

« int hwloc_distances_transform (hwloc_topology t topology, struct hwloc_distances_s xdistances, enum
hwloc_distances_transform_e transform, void xtransform_attr, unsigned long flags)

23.28.1 Detailed Description

23.28.2 Enumeration Type Documentation
23.28.2.1 hwloc_distances_kind_e

enum hwloc_distances_kind_e

Kinds of distance matrices.

The kind attribute of struct hwloc_distances_s is a OR'ed set of kinds.

Each distance matrix may have only one kind among HWLOC_DISTANCES_KIND_FROM_x* specifying where
distance information comes from, and one kind among HWLOC_DISTANCES_KIND_MEANS_ x specifying whether
values are latencies or bandwidths.

Enumerator

HWLOC_DISTANCES_KIND_FROM_OS | These distances were obtained from the operating
system or hardware.

HWLOC_DISTANCES_KIND_FROM_USER | These distances were provided by the user.

Generated by Doxygen

168 Topic Documentation

Enumerator

HWLOC_DISTANCES_KIND_MEANS_LATENCY | Distance values are similar to latencies between
objects. Values are smaller for closer objects, hence
minimal on the diagonal of the matrix (distance
between an object and itself). It could also be the
number of network hops between objects, etc.

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH | Distance values are similar to bandwidths between
objects. Values are higher for closer objects, hence
maximal on the diagonal of the matrix (distance
between an object and itself). Such values are
currently ignored for distance-based grouping.
HWLOC_DISTANCES_KIND_HETEROGENEOUS« | This distances structure covers objects of different

_TYPES | types. This may apply to the "NVLinkBandwidth"
structure in presence of a NVSwitch or POWER
processor NVLink port.

23.28.2.2 hwloc_distances_transform_e

enum hwloc_distances_transform_e

Transformations of distances structures.

Enumerator

HWLOC_DISTANCES_TRANSFORM_REMOVE_+« | Remove NULL objects from the distances structure.
NULL | Every object that was replaced with NULL in the

objs array is removed and the values array is

updated accordingly.

At least 2 objects must remain, otherwise

hwloc_distances_transform() will return —1 with

errno setto EINVAL.

kind will be updated with or without

HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES

according to the remaining objects.

HWLOC_DISTANCES_TRANSFORM_LINKS | Replace bandwidth values with a number of links.
Usually all values will be either 0 (no link) or 1 (one
link). However some matrices could get larger values
if some pairs of peers are connected by different
numbers of links.
Values on the diagonal are set to 0.
This transformation only applies to bandwidth
matrices.
HWLOC_DISTANCES_TRANSFORM_MERGE_+« | Merge switches with multiple ports into a single
SWITCH_PORTS | object. This currently only applies to NVSwitches
where GPUs seem connected to different switch
ports. Switch ports must be objects with subtype
"NVSwitch" as in the NVLinkBandwidth matrix.
This transformation will replace all ports with only the
first one, now connected to all GPUs. Other ports are
removed by applying
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL
internally.

Generated by Doxygen

23.28 Retrieve distances between objects 169

Enumerator

HWLOC_DISTANCES_TRANSFORM_« | Apply a transitive closure to the matrix to connect
TRANSITIVE_CLOSURE | objects across switches. All pairs of GPUs will be

reported as directly connected instead GPUs being

only connected to switches.

Switch ports must be objects with subtype "NVSwitch"

as in the NVLinkBandwidth matrix.

23.28.3 Function Documentation
23.28.3.1 hwloc_distances_get()

int hwloc_distances_get (

hwloc_topology_t topology,

unsigned * nr,

struct hwloc_distances_s %% distances,

unsigned long kind,

unsigned long flags)
Retrieve distance matrices.
Retrieve distance matrices from the topology into the distances array.
flags is currently unused, should be 0.
kind serves as a filter. If 0, all distance matrices are returned. If it contains some HWLOC_DISTANCES KIND+«
_FROM_x, only distance matrices whose kind matches one of these are returned. If it contains some HWLOC_ «
DISTANCES_KIND_MEANS_ x, only distance matrices whose kind matches one of these are returned.
On input, nr points to the number of distance matrices that may be stored in distances. On output, nr points to
the number of distance matrices that were actually found, even if some of them couldn't be stored in distances.
Distance matrices that couldn't be stored are ignored, but the function still returns success (0). The caller may find
out by comparing the value pointed by nr before and after the function call.
Each distance matrix returned in the di st ances array should be released by the caller using hwloc_distances_release().

Returns

0 on success, -1 on error.

23.28.3.2 hwloc_distances_get_by_depth()

int hwloc_distances_get_by_depth (
hwloc_topology_t topology,
int depth,
unsigned * nr,
struct hwloc_distances_s ** distances,
unsigned long kind,
unsigned long flags)
Retrieve distance matrices for object at a specific depth in the topology.
Identical to hwloc_distances_get() with the additional depth filter.

Returns

0 on success, -1 on error.

23.28.3.3 hwloc_distances_get_by name()

int hwloc_distances_get_by_name (
hwloc_topology_t topology,
const char * name,
unsigned * nr,
struct hwloc_distances_s *xx distances,

unsigned long flags)

Generated by Doxygen

170 Topic Documentation

Retrieve a distance matrix with the given name.

Usually only one distances structure may match a given name.

The name of the most common structure is "NUMALatency". Others include "XGMIBandwidth", "XGMIHops", "«
XelLinkBandwidth", and "NVLinkBandwidth".

Returns

0 on success, -1 on error.

23.28.3.4 hwloc_distances_get_by_type()

int hwloc_distances_get_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type,
unsigned * nr,
struct hwloc_distances_s xx distances,
unsigned long kind,
unsigned long flags)

Retrieve distance matrices for object of a specific type.

Identical to hwloc_distances_get() with the additional t ype filter.

Returns

0 on success, -1 on error.

23.28.3.5 hwloc_distances_get_name()

const char * hwloc_distances_get_name (
hwloc_topology_t topology,
struct hwloc_distances_s *x distances)
Get a description of what a distances structure contains.
For instance "NUMALatency" for hardware-provided NUMA distances (ACPI SLIT), or NULL if unknown.

Returns

the constant string with the name of the distance structure.

Note

The returned name should not be freed by the caller, it belongs to the hwloc library.

23.28.3.6 hwloc_distances_release()

void hwloc_distances_release (
hwloc_topology_t topology,
struct hwloc_distances_s *x distances)
Release a distance matrix structure previously returned by hwloc_distances_get().

Note

This function is not required if the structure is removed with hwloc_distances_release_remove().

23.28.3.7 hwloc_distances_transform()

int hwloc_distances_transform (
hwloc_topology_t topology,
struct hwloc_distances_s * distances,
enum hwloc_distances_transform_e transform,
void *x transform attr,

unsigned long flags)

Generated by Doxygen

23.29 Helpers for consulting distance matrices 171

Apply a transformation to a distances structure.

Modify a distances structure that was previously obtained with hwloc_distances_get() or one of its variants.

This modifies the local copy of the distances structures but does not modify the distances information stored inside
the topology (retrieved by another call to hwloc_distances_get() or exported to XML). To do so, one should add a
new distances structure with same name, kind, objects and values (see Add distances between objects) and then
remove this old one with hwloc_distances_release_remove().

transform must be one of the transformations listed in hwloc_distances_transform_e.

These transformations may modify the contents of the objs or values arrays.

transform_attr must be NULL for now.

flags must be 0 for now.

Returns

0 on success, -1 on error for instance if flags are invalid.

Note

Objects in distances array ob js may be directly modified in place without using hwloc_distances_transform().
One may use hwloc_get_obj_with_same_locality() to easily convert between similar objects of different types.

23.29 Helpers for consulting distance matrices

Functions

« int hwloc_distances_obj_index (struct hwloc_distances_s xdistances, hwloc_obj_t obj)
« int hwloc_distances_obj_pair_values (struct hwloc_distances_s xdistances, hwloc_obj_t obj1, hwloc_obj_t
obj2, hwloc_uint64_t xvalue1to2, hwloc_uint64_t xvalue2to1)

23.29.1 Detailed Description

23.29.2 Function Documentation
23.29.2.1 hwloc_distances_obj_index()

int hwloc_distances_obj_index (
struct hwloc_distances_s * distances,
hwloc_obj_t obj) [inline]

Find the index of an object in a distances structure.

Returns

the index of the object in the distances structure if any.

-1 if object ob 7 is not involved in structure distances.

23.29.2.2 hwloc_distances_obj_pair_values()

int hwloc_distances_obj_pair_values (
struct hwloc_distances_s * distances,
hwloc_obj_t objl,
hwloc_obij_t obj2,
hwloc_uinté64_t * valuelto2,
hwloc_uinto64_t *x valueZtol) [inline]
Find the values between two objects in a distance matrices.
The distance from obj1 to obj2 is stored in the value pointed by valuelto2 and reciprocally.

Returns

0 on success.

-1 if object obj1 or obj2 is not involved in structure distances.

Generated by Doxygen

172 Topic Documentation

23.30 Add distances between objects

Typedefs

« typedef void * hwloc_distances_add_handle_t

Enumerations

» enum hwloc_distances_add flag e { HWLOC_DISTANCES_ADD_FLAG_GROUP , HWLOC_DISTANCES_ADD_FLAG_GROL
!

Functions

» hwloc_distances_add_handle_t hwloc_distances_add_create (hwloc_topology_t topology, const char xname,
unsigned long kind, unsigned long flags)

« int hwloc_distances_add_values (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, un-
signed nbobjs, hwloc_obj_t xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« int hwloc_distances_add_commit (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, un-
signed long flags)

23.30.1 Detailed Description

The usual way to add distances is:
hwloc_distances_add_handle_t handle;
int err = -1;
handle = hwloc_distances_add_create (topology, "name", kind, 0);

- (handle) {

err = hwloc_distances_add_values (topology, handle, nbobjs, objs, values, 0);

(lerr)
err = hwloc_distances_add_commit (topology, handle, flags);

}
If erris O at the end, then addition was successful.

23.30.2 Typedef Documentation
23.30.2.1 hwloc_distances_add_handle_t

typedef voidx hwloc_distances_add_handle_t

Handle to a new distances structure during its addition to the topology.
23.30.3 Enumeration Type Documentation

23.30.3.1 hwloc_distances_add_flag_e

enum hwloc_distances_add_flag_e
Flags for adding a new distances to a topology.

Enumerator

HWLOC_DISTANCES_ADD_FLAG_GROUP | Try to group objects based on the newly provided
distance information. Grouping is only performed
when the distances structure contains latencies, and
when all objects are of the same type.

HWLOC_DISTANCES_ADD_FLAG_GROUP_« | If grouping, consider the distance values as

INACCURATE | inaccurate and relax the comparisons during the
grouping algorithms. The actual accuracy may be
modified through the
HWLOC_GROUPING_ACCURACY environment
variable (see Environment Variables).

Generated by Doxygen

23.30 Add distances between objects 173

23.30.4 Function Documentation
23.30.4.1 hwloc_distances_add_commit()

int hwloc_distances_add_commit (
hwloc_topology_t topology,
hwloc_distances_add_handle_t handle,
unsigned long flags)
Commit a new distances structure.
This function finalizes the distances structure and inserts in it the topology.
Parameter handle was previously returned by hwloc_distances_add_create(). Then objects and values were
specified with hwloc_distances_add_values().
flags configures the behavior of the function using an optional OR'ed set of hwloc_distances_add_flag_e. It may
be used to request the grouping of existing objects based on distances.
On error, the temporary distances structure and its content are destroyed.

Returns

0 on success.

-1 on error.

23.30.4.2 hwloc_distances_add_create()

hwloc_distances_add_handle_t hwloc_distances_add_create (

hwloc_topology_t topology,

const char * name,

unsigned long kind,

unsigned long flags)
Create a new empty distances structure.
Create an empty distances structure to be filled with hwloc_distances_add_values() and then committed with
hwloc_distances_add_commit().
Parameter name is optional, it may be NULL. Otherwise, it will be copied internally and may later be freed by the
caller.
kind specifies the kind of distance as a OR'ed set of hwloc_distances_kind_e. Only one kind of meaning and
one kind of provenance may be given if appropriate (e.9g. HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH and
HWLOC_DISTANCES_KIND_FROM_USER). Kind HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES
will be automatically set according to objects having different types in hwloc_distances_add_values().
flags must be O for now.

Returns

A hwloc_distances_add_handle_t that should then be passed to hwloc_distances_add values() and
hwloc_distances_add_commit().

NULL on error.

23.30.4.3 hwloc_distances_add_values()

int hwloc_distances_add_values (

hwloc_topology_t topology,

hwloc_distances_add_handle_t handle,

unsigned nbobjs,

hwloc_obij_t * objs,

hwloc_uinté64_t x values,

unsigned long flags)
Specify the objects and values in a new empty distances structure.
Specify the objects and values for a new distances structure that was returned as a handle by hwloc_distances_add_create().
The structure must then be committed with hwloc_distances_add_commit().
The number of objects is nbob js and the array of objects is ob js. Distance values are stored as a one-dimension
array in values. The distance from object i to object j is in slot ixnbobjs+j.

Generated by Doxygen

174 Topic Documentation

nbobjs must be at least 2.

Arrays objs and values will be copied internally, they may later be freed by the caller.
On error, the temporary distances structure and its content are destroyed.

flags must be 0 for now.

Returns

0 on success.

-1 on error.

23.31 Remove distances between objects

Functions

« int hwloc_distances_remove (hwloc_topology_t topology)

« int hwloc_distances_remove_by_depth (hwloc_topology_t topology, int depth)

« int hwloc_distances_remove_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_distances_release_remove (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

23.31.1 Detailed Description

23.31.2 Function Documentation
23.31.2.1 hwloc_distances_release_remove()

int hwloc_distances_release_remove (

hwloc_topology_t topology,

struct hwloc_distances_s *x distances)
Release and remove the given distance matrice from the topology.
This function includes a call to hwloc_distances_release().

Returns

0 on success, -1 on error.

23.31.2.2 hwloc_distances_remove()

int hwloc_distances_remove (
hwloc_topology_t topology)
Remove all distance matrices from a topology.
Remove all distance matrices, either provided by the user or gathered through the OS.
If these distances were used to group objects, these additional Group objects are not removed from the topology.

Returns

0 on success, -1 on error.

23.31.2.3 hwloc_distances_remove_by_depth()

int hwloc_distances_remove_by_depth (
hwloc_topology_t topology,
int depth)
Remove distance matrices for objects at a specific depth in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 175

23.31.2.4 hwloc_distances_remove_by_type()

int hwloc_distances_remove_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Remove distance matrices for objects of a specific type in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

23.32 Comparing memory node attributes for finding where to allocate
on

Data Structures

« struct hwloc_location

Typedefs

« typedef unsigned hwloc_memattr_id_t

Enumerations

* enum hwloc_memattr_id_e {
HWLOC_MEMATTR_ID CAPACITY ,HWLOC _MEMATTR_ID LOCALITY ,HWLOC MEMATTR_ID_BANDWIDTH
, HWLOC_MEMATTR_ID_READ_BANDWIDTH
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH , HWLOC_MEMATTR_ID_LATENCY , HWLOC MEMATTR_ID_READ_LATEN
, HWLOC_MEMATTR_ID_WRITE_LATENCY ,
HWLOC_MEMATTR_ID_MAX}

+ enum hwloc_location_type_e { HWLOC_LOCATION_TYPE_CPUSET , HWLOC_LOCATION_TYPE_OBJECT
1

* enum hwloc_local_numanode _flag e { HWLOC_LOCAL _NUMANODE_FLAG_LARGER_LOCALITY ,
HWLOC_LOCAL_NUMANODE FLAG_SMALLER LOCALITY,HWLOC LOCAL_NUMANODE_ FLAG_INTERSECT_ LOCAL!
, HWLOC_LOCAL_NUMANODE_FLAG_ALL }

Functions

« int hwloc_memattr_get by name (hwloc_topology_t topology, const char xname, hwloc_memattr_id_t *id)

« int hwloc_get_local_numanode_objs (hwloc_topology_t topology, struct hwloc_location xlocation, unsigned
xnr, hwloc_obj_t xnodes, unsigned long flags)

« int hwloc_topology_get_default_nodeset (hwloc_topology_t topology, hwloc_nodeset_t nodeset, unsigned
long flags)

 int hwloc_memattr_get_value (hwloc_topology t topology, hwloc_memattr_id t attribute, hwloc_obj_t
target_node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64_t xvalue)

» int hwloc_memattr_get_best_target (hwloc_topology_t topology, hwloc_memattr_id t attribute, struct
hwloc_location xinitiator, unsigned long flags, hwloc_obj_t xbest_target, hwloc_uint64_t xvalue)

« int hwloc_memattr_get_best_initiator (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t
target_node, unsigned long flags, struct hwloc_location xbest_initiator, hwloc_uint64_t xvalue)

 inthwloc_memattr_get_targets (hwloc_topology_t topology, hwloc_memattr_id_t attribute, struct hwloc_location
«initiator, unsigned long flags, unsigned xnr, hwloc_obj_t xtargets, hwloc_uint64_t xvalues)

« int hwloc_memattr_get_initiators (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t
target_node, unsigned long flags, unsigned *nr, struct hwloc_location xinitiators, hwloc_uint64_t svalues)

Generated by Doxygen

176 Topic Documentation

23.32.1 Detailed Description

Platforms with heterogeneous memory require ways to decide whether a buffer should be allocated on "fast" memory
(such as HBM), "normal" memory (DDR) or even "slow" but large-capacity memory (non-volatile memory). These
memory nodes are called "Targets" while the CPU accessing them is called the "Initiator". Access performance
depends on their locality (NUMA platforms) as well as the intrinsic performance of the targets (heterogeneous
platforms).

The following attributes describe the performance of memory accesses from an Initiator to a memory Target, for
instance their latency or bandwidth. Initiators performing these memory accesses are usually some PUs or Cores
(described as a CPU set). Hence a Core may choose where to allocate a memory buffer by comparing the attributes
of different target memory nodes nearby.

There are also some attributes that are system-wide. Their value does not depend on a specific initiator performing
an access. The memory node Capacity is an example of such attribute without initiator.

One way to use this APl is to start with a cpuset describing the Cores where a program is bound. The best target
NUMA node for allocating memory in this program on these Cores may be obtained by passing this cpuset as an
initiator to hwloc_memattr_get_best_target() with the relevant memory attribute. For instance, if the code is latency
limited, use the Latency attribute.

A more flexible approach consists in getting the list of local NUMA nodes by passing this cpuset to
hwloc_get_local_numanode_objs(). Attribute values for these nodes, if any, may then be obtained with
hwloc_memattr_get_value() and manually compared with the desired criteria.

Memory attributes are also used internally to build Memory Tiers which provide an easy way to distinguish NUMA
nodes of different kinds, as explained in Heterogeneous Memory.

Beside tiers, hwloc defines a set of "default” nodes where normal memory allocations should be made from (see
hwloc_topology_get_default_nodeset()). This is also useful for dividing the machine into a set of non-overlapping
NUMA domains, for instance for binding tasks per domain.

See also

An example is available in doc/examples/memory-attributes.c in the source tree.

Note

The API also supports specific objects as initiator, but it is currently not used internally by hwloc. Users may
for instance use it to provide custom performance values for host memory accesses performed by GPUs.

The interface actually also accepts targets that are not NUMA nodes.

23.32.2 Typedef Documentation
23.32.2.1 hwloc_memattr_id_t

typedef unsigned hwloc_memattr_id_t

A memory attribute identifier.

hwloc predefines some commonly-used attributes in hwloc_memattr_id_e. One may then dynamically register
custom ones with hwloc_memattr_register(), they will be assigned IDs immediately after the predefined ones. See
Managing memory attributes for more information about existing attribute IDs.

23.32.3 Enumeration Type Documentation
23.32.3.1 hwloc_local_numanode_flag_e

enum hwloc_local_numanode_flag_e

Flags for selecting target NUMA nodes.

Enumerator

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_+« | Select NUMA nodes whose locality is larger than the

LOCALITY | given cpuset. For instance, if a single PU (or its
cpuset) is givenin initiator, select all nodes
close to the package that contains this PU.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 177

Enumerator

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER+« | Select NUMA nodes whose locality is smaller than the

_LOCALITY | given cpuset. For instance, if a package (or its cpuset)
isgivenin initiator, also select nodes that are
attached to only a half of that package.

HWLOC_LOCAL_NUMANODE_FLAG_+« | Select NUMA nodes whose locality intersects the

INTERSECT_LOCALITY | given cpuset. This includes larger and smaller
localities as well as localities that are partially
included. For instance, if the locality is one core of
both packages, a NUMA node local to one package is
neither larger nor smaller than this locality, but it
intersects it.
HWLOC_LOCAL_NUMANODE_FLAG_ALL | Select all NUMA nodes in the topology. The initiator
initiator isignored.

23.32.3.2 hwloc_location_type_e

enum hwloc_location_type_e
Type of location.

Enumerator

HWLOC_LOCATION_TYPE_CPUSET | Location is given as a cpuset, in the location cpuset union field.
HWLOC_LOCATION_TYPE_OBJECT | Location is given as an object, in the location object union field.

23.32.3.3 hwloc_memattr_id_e

enum hwloc_memattr_id_e
Predefined memory attribute IDs. See hwloc_memattr_id_t for the generic definition of IDs for predefined or custom
attributes.

Enumerator

HWLOC_MEMATTR_ID_CAPACITY | The "Capacity" is returned in bytes (local_memory attribute
in objects). Best capacity nodes are nodes with higher
capacity.

No initiator is involved when looking at this attribute. The
corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Capacity values may not be modified using
hwloc_memattr_set_value().

HWLOC_MEMATTR_ID_LOCALITY | The "Locality" is returned as the number of PUs in that
locality (e.g. the weight of its cpuset). Best locality nodes
are nodes with smaller locality (nodes that are local to
very few PUs). Poor locality nodes are nodes with larger
locality (nodes that are local to the entire machine).

No initiator is involved when looking at this attribute. The
corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Locality values may not be modified using
hwloc_memattr_set_value().

Generated by Doxygen

178

Topic Documentation

Enumerator

HWLOC_MEMATTR_ID_BANDWIDTH

The "Bandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes
with higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average bandwidth for read and write accesses.
If the platform provides individual read and write bandwidths
but no explicit average value, hwloc computes and returns
the average.

HWLOC_MEMATTR_ID_READ_BANDWIDTH

The "ReadBandwidth" is returned in MiB/s, as seen from
the given initiator location. Best bandwidth nodes are nodes
with higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_WRITE_BANDWIDTH

The "WriteBandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes
with higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_LATENCY

The "Latency" is returned as nanoseconds, as seen from
the given initiator location. Best latency nodes are nodes
with smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average latency for read and write accesses. If
the platform provides individual read and write latencies but
no explicit average value, hwloc computes and returns the
average.

HWLOC_MEMATTR_ID_READ_LATENCY

The "ReadLatency" is returned as nanoseconds, as seen
from the given initiator location. Best latency nodes are
nodes with smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_WRITE_LATENCY

The "WriteLatency" is returned as nanoseconds, as seen
from the given initiator location. Best latency nodes are
nodes with smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

23.32.4 Function Documentation
23.32.4.1 hwloc_get_local_numanode_obijs()

int hwloc_get_local_numanode_objs (

hwloc_topology_t topology,

struct hwloc_location * location,

unsigned * nr,
hwloc_obj_t * nodes,

unsigned long flags)

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 179

Return an array of local NUMA nodes.

By default only select the NUMA nodes whose locality is exactly the given 1ocat ion. More nodes may be selected
if additional flags are given as a OR'ed set of hwloc_local_numanode_flag_e.

If Location is given as an explicit object, its CPU set is used to find NUMA nodes with the corresponding locality.
If the object does not have a CPU set (e.g. I/O object), the CPU parent (where the 1/O object is attached) is used.
On input, nr points to the number of nodes that may be stored in the nodes array. On output, nr will be changed
to the number of stored nodes, or the number of nodes that would have been stored if there were enough room.

Returns

0 on success or -1 on error.

Note

Some of these NUMA nodes may not have any memory attribute values and hence not be reported as actual
targets in other functions.

The number of NUMA nodes in the topology (obtained by hwloc_bitmap_weight() on the root object nodeset)
may be used to allocate the nodes array.

When an object CPU set is given as locality, for instance a Package, and when flags contain both
HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY and HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALIT
the returned array corresponds to the nodeset of that object.

23.32.4.2 hwloc_memattr_get_best_initiator()

int hwloc_memattr_get_best_initiator (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,
unsigned long flags,
struct hwloc_location *x best_initiator,
hwloc_uint64_t *x value)
Return the best initiator for the given attribute and target NUMA node.
If value is non NULL, the corresponding value is returned there.
If multiple initiators have the same attribute values, only one is returned (and there is no way to clarify how that one
is chosen). Applications that want to detect initiators with identical/similar values, or that want to look at values for
multiple attributes, should rather get all values using hwloc_memattr_get_value() and manually select the initiator
they consider the best.
The returned initiator should not be modified or freed, it belongs to the topology.
target_node cannot be NULL.
flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching initiators.

-1 with errno set to EINVAL if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR).

23.32.4.3 hwloc_memattr_get_best_target()

int hwloc_memattr_get_best_target (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
struct hwloc_location * initiator,
unsigned long flags,
hwloc_obj_t * best_target,
hwloc_uinto64_t *x value)
Return the best target NUMA node for the given attribute and initiator.

Generated by Doxygen

180 Topic Documentation

If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.

If value is non NULL, the corresponding value is returned there.

If multiple targets have the same attribute values, only one is returned (and there is no way to clarify how that one

is chosen). Applications that want to detect targets with identical/similar values, or that want to look at values for
multiple attributes, should rather get all values using hwloc_memattr_get_value() and manually select the target

they consider the best.

flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching targets.

-1 with errno set to EINVAL if flags are invalid, or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but
users may for instance use it to provide custom information about host memory accesses performed by GPUs.

23.32.4.4 hwloc_memattr_get_by name()

int hwloc_memattr_get_by_name (
hwloc_topology_t topology,
const char * name,
hwloc_memattr_id_t * id)
Return the identifier of the memory attribute with the given name.

Returns

0 on success.

-1 with errno set to EINVAL if no such attribute exists.

23.32.4.5 hwloc_memattr_get_initiators()

int hwloc_memattr_get_initiators (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

hwloc_obj_t target_node,

unsigned long flags,

unsigned * nr,

struct hwloc_location *x initiators,

hwloc_uinto64_t *x values)
Return the initiators that have values for a given attribute for a specific target NUMA node.
Return initiators for the given attribute and target node in the initiators array. If values is not NULL, the
corresponding attribute values are stored in the array it points to.
On input, nr points to the number of initiators that may be stored in the array initiators (and values). On
output, nr points to the number of initiators (and values) that were actually found, even if some of them couldn't be
stored in the array. Initiators that couldn't be stored are ignored, but the function still returns success (0). The caller
may find out by comparing the value pointed by nr before and after the function call.
The returned initiators should not be modified or freed, they belong to the topology.
target_node cannot be NULL.
flags must be 0 for now.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
no initiator is returned.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 181

Returns

0 on success or -1 on error.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look
at their attribute values for some relevant initiators.

23.32.4.6 hwloc_memattr_get_targets()

int hwloc_memattr_get_targets (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

struct hwloc_location * initiator,

unsigned long flags,

unsigned * nr,

hwloc_obj_t * targets,

hwloc_uint64_t *x values)
Return the target NUMA nodes that have some values for a given attribute.
Return targets for the given attribute in the targets array (for the given initiator if any). If values is not NULL,
the corresponding attribute values are stored in the array it points to.
On input, nr points to the number of targets that may be stored in the array targets (and values). On output,
nr points to the number of targets (and values) that were actually found, even if some of them couldn't be stored in
the array. Targets that couldn't be stored are ignored, but the function still returns success (0). The caller may find
out by comparing the value pointed by nr before and after the function call.
The returned targets should not be modified or freed, they belong to the topology.
Argument initiator is ignored if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR). Otherwise initiator may be non NULL to report only targets
that have a value for that initiator.
flags must be 0 for now.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look
at their attribute values.

Returns

0 on success or -1 on error.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to ac-
cesses performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by
hwloc, but users may for instance use it to provide custom information about host memory accesses per-
formed by GPUs.

23.32.4.7 hwloc_memattr_get_value()

int hwloc_memattr_get_value (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,
struct hwloc_location % initiator,
unsigned long flags,
hwloc_uinto64_t *x value)

Return an attribute value for a specific target NUMA node.

Generated by Doxygen

182 Topic Documentation

If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.

target_node cannot be NULL. If attribute is HWLOC_MEMATTR_ID_CAPACITY, target_node must

be a NUMA node. If itis HWLOC_MEMATTR_ID_LOCALITY, target_node must have a CPU set.

flags must be O for now.

Returns

0 on success.

-1 on error, for instance with errno set to EINVAL if flags are invalid or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but
users may for instance use it to provide custom information about host memory accesses performed by GPUs.

23.32.4.8 hwloc_topology_get_default_nodeset()

int hwloc_topology_get_default_nodeset (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

unsigned long flags)
Return the set of default NUMA nodes.
In machines with heterogeneous memory, some NUMA nodes are considered the default ones, i.e. where basic
allocations should be made from. These are usually DRAM nodes.
Other nodes may be reserved for specific use (I/O device memory, e.g. GPU memory), small but high performance
(HBM), large but slow memory (NVM), etc. Buffers should usually not be allocated from there unless explicitly
required.
This function fills node set with the bits of NUMA nodes considered default.
It is guaranteed that these nodes have non-intersecting CPU sets, i.e. cores may not have multiple local NUMA
nodes anymore. Hence this may be used to iterate over the platform divided into separate NUMA localities, for
instance for binding one task per NUMA domain.
Any core that had some local NUMA node(s) in the initial topology should still have one in the default nodeset.
Corner cases where this would be wrong consist in asymmetric platforms with missing DRAM nodes, or topologies
that were already restricted to less NUMA nodes.
The returned nodeset may be passed to hwloc_topology_restrict() with HWLOC_RESTRICT_FLAG_BYNODESET
to remove all non-default nodes from the topology. The resulting topology will be easier to use when iterating over
(now homogeneous) NUMA nodes.
The heuristics for finding default nodes relies on memory tiers and subtypes (see Heterogeneous Memory) as well
as the assumption that hardware vendors list default nodes first in hardware tables.
flags mustbe 0 for now.

Returns

0 on success.

-1 on error.

Note

The returned nodeset usually contains all nodes from a single memory tier, likely the DRAM one.

The returned nodeset is included in the list of available nodes returned by hwloc_topology_get_topology_nodeset().
It is strictly smaller if the machine has heterogeneous memory.

The heuristics may return a suboptimal set of nodes if hwloc could not guess memory types and/or if some
default nodes were removed earlier from the topology (e.g. with hwloc_topology_restrict()).

Generated by Doxygen

23.33 Managing memory attributes 183

23.33 Managing memory attributes

Enumerations

« enum hwloc_memattr_flag_e { HWLOC_MEMATTR_FLAG_HIGHER_FIRST = (1UL<<0) , HWLOC_MEMATTR_FLAG_LOWE
= (1UL<<1) , HWLOC_MEMATTR_FLAG_NEED_INITIATOR = (1UL<<2) }

Functions

« int hwloc_memattr_get_name (hwloc_topology_t topology, hwloc_memattr_id_t attribute, const char xxname)

« int hwloc_memattr_get_flags (hwloc_topology_t topology, hwloc_memattr_id_t attribute, unsigned long
xflags)

« int hwloc_memattr_register (hwloc_topology t topology, const char xname, unsigned long flags,
hwloc_memattr_id_t xid)

» int hwloc_mematir_set _value (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t
target_node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64_t value)

23.33.1 Detailed Description

Memory attribues are identified by an ID (hwloc_memattr_id_t) and a name. hwloc_memattr_get name() and
hwloc_memattr_get_by_name() convert between them (or return error if the attribute does not exist).

The set of valid hwloc_memattr_id_t is a contigous set starting at 0. It first contains predefined attributes, as listed
in hwloc_memattr_id_e (from 0 to HWLOC_MEMATTR_ID_MAX-1). Then custom attributes may be dynamically
registered with hwloc_memattr_register(). They will get the following IDs (HWLOC_MEMATTR_ID_MAX for the first
one, etc.).

To iterate over all valid attributes (either predefined or dynamically registered custom ones), one may iterate over
IDs starting from 0 until hwloc_memattr_get_name() or hwloc_memattr_get_flags() returns an error.

The values for an existing attribute or for custom dynamically registered ones may be set or modified with
hwloc_memattr_set_value().

23.33.2 Enumeration Type Documentation
23.33.2.1 hwloc_memattr_flag_e

enum hwloc_memattr_flag_e
Memory attribute flags. Given to hwloc_memattr_register() and returned by hwloc_memattr_get_flags().

Enumerator

HWLOC_MEMATTR_FLAG_HIGHER_FIRST | The best nodes for this memory attribute are those with the
higher values. For instance Bandwidth.
HWLOC_MEMATTR_FLAG_LOWER_FIRST | The best nodes for this memory attribute are those with the
lower values. For instance Latency.
HWLOC_MEMATTR_FLAG_NEED_INITIATOR | The value returned for this memory attribute depends on the
given initiator. For instance Bandwidth and Latency, but not
Capacity.

23.33.3 Function Documentation
23.33.3.1 hwloc_memattr_get_flags()

int hwloc_memattr_get_flags (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
unsigned long * flags)

Return the flags of the given attribute.

Flags are a OR'ed set of hwloc_memattr_flag_e.

The output pointer £1ags cannot be NULL.

Generated by Doxygen

184 Topic Documentation

Returns

0 on success.

-1 with errno set to EINVAL if the attribute does not exist.

23.33.3.2 hwloc_memattr_get_name()

int hwloc_memattr_get_name (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
const char *x*x name)

Return the name of a memory attribute.

The output pointer name cannot be NULL.

Returns

0 on success.

-1 with errno set to EINVAL if the attribute does not exist.

23.33.3.3 hwloc_memattr_register()

int hwloc_memattr_register (

hwloc_topology_t topology,

const char * name,

unsigned long flags,

hwloc_memattr_id_t * id)
Register a new memory attribute.
Add a new custom memory attribute. Flags are a OR'ed set of hwloc_memattr_flag_e. It must contain one of
HWLOC_MEMATTR_FLAG_HIGHER_FIRST or HWLOC_MEMATTR_FLAG_LOWER_FIRST but not both.
The new attribute id is immediately after the last existing attribute ID (which is either the ID of the last registered
attribute if any, or the ID of the last predefined attribute in hwloc_memattr_id_e).

Returns

0 on success.
-1 with errno set to EINVAL if an invalid set of flags is given.

-1 with errno set to EBUSY if another attribute already uses this name.

23.33.3.4 hwloc_memattr_set_value()

int hwloc_memattr_set_value (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,
struct hwloc_location *x initiator,
unsigned long flags,
hwloc_uint64_t value)
Set an attribute value for a specific target NUMA node.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.
The initiator will be copied into the topology, the caller should free anything allocated to store the initiator, for instance
the cpuset.
target_node cannot be NULL.
attribute cannot be HWLOC_MEMATTR_ID_CAPACITY or HWLOC_MEMATTR_ID_LOCALITY.
flags must be 0 for now.

Generated by Doxygen

23.34 Kinds of CPU cores 185

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to ac-
cesses performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by
hwloc, but users may for instance use it to provide custom information about host memory accesses per-
formed by GPUs.

Returns

0 on success or -1 on error.

23.34 Kinds of CPU cores

Functions

« int hwloc_cpukinds_get_nr (hwloc_topology_t topology, unsigned long flags)

« inthwloc_cpukinds_get_by_cpuset (hwloc_topology_t topology, hwloc_const_bitmap_t cpuset, unsigned long
flags)

« int hwloc_cpukinds_get_info (hwloc_topology_t topology, unsigned kind_index, hwloc_bitmap_t cpuset, int
xefficiency, unsigned *nr_infos, struct hwloc_info_s *xinfos, unsigned long flags)

« int hwloc_cpukinds_register (hwloc_topology_t topology, hwloc_bitmap_t cpuset, int forced_efficiency, un-
signed nr_infos, struct hwloc_info_s xinfos, unsigned long flags)

23.34.1 Detailed Description

Platforms with heterogeneous CPUs may have some cores with different features or frequencies. This AP| exposes
identical PUs in sets called CPU kinds. Each PU of the topology may only be in a single kind.

The number of kinds may be obtained with hwloc_cpukinds_get_nr(). If the platform is homogeneous, there may be
a single kind with all PUs. If the platform or operating system does not expose any information about CPU cores,
there may be no kind at all.

The index of the kind that describes a given CPU set (if any, and not partially) may be obtained with
hwloc_cpukinds_get_by_cpuset().

From the index of a kind, it is possible to retrieve information with hwloc_cpukinds_get_info(): an abstracted effi-
ciency value, and an array of info attributes (for instance the "CoreType" and "FrequencyMaxMHz", see CPU Kinds).
A higher efficiency value means greater intrinsic performance (and possibly less performance/power efficiency).
Kinds with lower efficiency values are ranked first: Passing 0 as kind_index to hwloc_cpukinds_get_info() will
return information about the CPU kind with lower performance but higher energy-efficiency. Higher kind_index
values would rather return information about power-hungry high-performance cores.

When available, efficiency values are gathered from the operating system. If so, cpukind_efficiencyissetin
the struct hwloc_topology_discovery_support array. This is currently available on Windows 10, Mac OS X (Darwin),
and on some Linux platforms where core "capacity" is exposed in sysfs.

If the operating system does not expose core efficiencies natively, hwloc tries to compute efficiencies by comparing
CPU kinds using frequencies (on ARM), or core types and frequencies (on other architectures). The environment
variable HWLOC_CPUKINDS_RANKING may be used to change this heuristics, see Environment Variables.

If hwloc fails to rank any kind, for instance because the operating system does not expose efficiencies and core
frequencies, all kinds will have an unknown efficiency (-1), and they are not indexed/ordered in any specific way.

23.34.2 Function Documentation
23.34.2.1 hwloc_cpukinds_get_by_cpuset()

int hwloc_cpukinds_get_by_cpuset (
hwloc_topology_t topology,
hwloc_const_bitmap_t cpuset,
unsigned long flags)
Get the index of the CPU kind that contains CPUs listed in cpuset.
flags must be 0 for now.

Generated by Doxygen

186

Topic Documentation

Returns

The index of the CPU kind (positive integer or 0) on success.
—1 with errno set to EXDEV if cpuset is only partially included in the some kind.

-1 with errno setto ENOENT if cpuset is not included in any kind, even partially.

-1 with errno set to EINVAL if parameters are invalid.

23.34.2.2 hwloc_cpukinds_get_info()

int hwloc_cpukinds_get_info (
hwloc_topology_t topology,
unsigned kind_index,
hwloc_bitmap_t cpuset,
int * efficiency,
unsigned * nr_infos,
struct hwloc_info_s %% infos,
unsigned long flags)
Get the CPU set and infos about a CPU kind in the topology.

kind_index identifies one kind of CPU between 0 and the number of kinds returned by hwloc_cpukinds_get_nr()

minus 1.

If not NULL, the bitmap cpuset will be filled with the set of PUs of this kind.

The integer pointed by efficiency, if not NULL will, be filled with the ranking of this kind of CPU in term of
efficiency (see above). It ranges from 0 to the number of kinds (as reported by hwloc_cpukinds_get_nr()) minus 1.

Kinds with lower efficiency are reported first.

If there is a single kind in the topology, its efficiency 0. If the efficiency of some kinds of cores is unknown, the

efficiency of all kinds is set to —1, and kinds are reported in no specific order.

The array of info attributes (for instance the "CoreType", "FrequencyMaxMHz" or "FrequencyBaseMHz", see
CPU Kinds) and its length are returned in infos or nr_infos. The array belongs to the topology, it should

not be freed or modified.
If nr_infosorinfos is NULL, no info is returned.
flags must be 0 for now.

Returns

0 on success.

-1 with errno set to ENOENT if kind_index does not match any CPU kind.

-1 with errno set to EINVAL if parameters are invalid.

23.34.2.3 hwloc_cpukinds_get_nr()

int hwloc_cpukinds_get_nr (

hwloc_topology_t topology,

unsigned long flags)
Get the number of different kinds of CPU cores in the topology.
flags mustbe 0 for now.

Returns

The number of CPU kinds (positive integer) on success.
0 if no information about kinds was found.

-1 with errno setto EINVAL if flags is invalid.

23.34.2.4 hwloc_cpukinds_register()

int hwloc_cpukinds_register (
hwloc_topology_t topology,
hwloc_bitmap_t cpuset,

Generated by Doxygen

23.35 Linux-specific helpers 187

int forced_efficiency,

unsigned nr_infos,

struct hwloc_info_s * infos,

unsigned long flags)
Register a kind of CPU in the topology.
Mark the PUs listed in cpuset as being of the same kind with respect to the given attributes.
forced_efficiency should be -1 if unknown. Otherwise it is an abstracted efficiency value to enforce the
ranking of all kinds if all of them have valid (and different) efficiencies.
The array infos of size nr_infos may be used to provide info names and values describing this kind of PUs.
flags must be 0 for now.
Parameters cpuset and infos will be duplicated internally, the caller is responsible for freeing them.
If cpuset overlaps with some existing kinds, those might get modified or split. For instance if existing kind A
contains PUs 0 and 1, and one registers another kind for PU 1 and 2, there will be 3 resulting kinds: existing
kind A is restricted to only PU 0; new kind B contains only PU 1 and combines information from A and from the
newly-registered kind; new kind C contains only PU 2 and only gets information from the newly-registered kind.

Note

The efficiency forced_efficiency provided to this function may be different from the one reported later
by hwloc_cpukinds_get_info() because hwloc will scale efficiency values down to between 0 and the number
of kinds minus 1.

Returns

0 on success.

-1 with errno set to EINVAL if some parameters are invalid, for instance if cpuset is NULL or empty.

23.35 Linux-specific helpers

Functions
« int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)
« int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t set)
« int hwloc_linux_get_tid last_cpu_location (hwloc_topology_t topology, pid_t tid, hwloc_bitmap_t set)
« int hwloc_linux_read_path_as_cpumask (const char xpath, hwloc_bitmap_t set)

23.35.1 Detailed Description

This includes helpers for manipulating Linux kernel cpumap files, and hwloc equivalents of the Linux sched_«
setaffinity and sched_getaffinity system calls.

23.35.2 Function Documentation
23.35.2.1 hwloc_linux_get_tid_cpubind()

int hwloc_linux_get_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_cpuset_t set)
Get the current binding of thread t id.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound
to.
The behavior is exactly the same as the Linux sched_getaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note

This is equivalent to calling hwloc_get_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

Generated by Doxygen

188 Topic Documentation

23.35.2.2 hwloc_linux_get_tid_last_cpu_location()

int hwloc_linux_get_tid_last_cpu_location (
hwloc_topology_t topology,
pid_t tid,
hwloc_bitmap_t set)
Get the last physical CPU where thread t id ran.
The CPU-set set (previously allocated by the caller) is filled with the PU which the thread last ran on.

Returns

0 on success, -1 on error.

Note
This is equivalent to calling hwloc_get_proc_last_cpu_location() with HWLOC_CPUBIND_THREAD as flags.

23.35.2.3 hwloc_linux_read_path_as_cpumask()

int hwloc_linux_read_path_as_cpumask (
const char * path,
hwloc_bitmap_t set)
Convert a linux kernel cpumask file path into a hwloc bitmap set.
Might be used when reading CPU set from sysfs attributes such as topology and caches for processors, or local«
_cpus for devices.

Returns

0 on success, -1 on error.

Note

This function ignores the HWLOC_FSROOT environment variable.

23.35.2.4 hwloc_linux_set_tid_cpubind()

int hwloc_linux_set_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_const_cpuset_t set)
Bind a thread t id on cpus given in cpuset set.
The behavior is exactly the same as the Linux sched_setaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note
This is equivalent to calling hwloc_set_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

23.36 Interoperability with Linux libnuma unsigned long masks

Functions

« int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology t topology, hwloc_const_cpuset_t cpuset, un-
signed long *mask, unsigned long *maxnode)

« int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset,
unsigned long xmask, unsigned long xmaxnode)

+ int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const un-
signed long xmask, unsigned long maxnode)

« int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const
unsigned long *mask, unsigned long maxnode)

Generated by Doxygen

23.36 Interoperability with Linux libnuma unsigned long masks 189

23.36.1 Detailed Description
This interface helps converting between Linux libnuma unsigned long masks and hwloc cpusets and nodesets.
Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in
the kernel configuration). This helper and libonuma may thus not be strictly compatible in this case, which may
be detected by checking whether numa_available() returns -1.

23.36.2 Function Documentation
23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()

int hwloc_cpuset_from_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_cpuset_t cpuset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long ma sk into hwloc CPU set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read
in mask.
This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Returns

0 on success.

-1 on error, for instance if failing an internal reallocation.

23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()

int hwloc_cpuset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_cpuset_t cpuset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc CPU set cpuset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be
stored in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an
array of unsigned long and a maximal node number as input parameter.

Returns

0.

23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()

int hwloc_nodeset_from_ linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long ma sk into hwloc NUMA node set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read
in mask.
This function may be used after calling get_ mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Generated by Doxygen

190 Topic Documentation

Returns

0 on success.
-1 with errno set to ENOMEM if some internal reallocation failed.

23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

int hwloc_nodeset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_nodeset_t nodeset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc NUMA node set nodeset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be
stored in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an
array of unsigned long and a maximal node number as input parameter.

Returns

0.

23.37 Interoperability with Linux libnuma bitmask

Functions

« struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_cpuset_t
cpuset)

« struct bitmask x hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_nodeset_t
nodeset)

« int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const
struct bitmask xbitmask)

» int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_topology t topology, hwloc_nodeset_t nodeset,
const struct bitmask *bitmask)

23.37.1 Detailed Description

This interface helps converting between Linux libnuma bitmasks and hwloc cpusets and nodesets.

Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in
the kernel configuration). This helper and libnuma may thus not be strictly compatible in this case, which may
be detected by checking whether numa_available() returns -1.

23.37.2 Function Documentation
23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()

int hwloc_cpuset_from_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_cpuset_t cpuset,
const struct bitmask *x bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc CPU set cpuset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

Generated by Doxygen

23.38 Windows-specific helpers 191

23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()

struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_cpuset_t cpuset) [inline]
Convert hwloc CPU set cpuset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Returns

newly allocated struct bitmask, or NULL on error.

23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()

int hwloc_nodeset_from_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_nodeset_t nodeset,
const struct bitmask *x bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc NUMA node set nodeset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

struct bitmask *x hwloc_nodeset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_nodeset_t nodeset) [inline]
Convert hwloc NUMA node set nodeset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Returns

newly allocated struct bitmask, or NULL on error.

23.38 Windows-specific helpers

Functions

« int hwloc_windows_get_nr_processor_groups (hwloc_topology_t topology, unsigned long flags)
« int hwloc_windows_get_processor_group_cpuset (hwloc_topology _t topology, unsigned pg_index,
hwloc_cpuset_t cpuset, unsigned long flags)

23.38.1 Detailed Description

These functions query Windows processor groups. These groups partition the operating system into virtual sets
of up to 64 neighbor PUs. Threads and processes may only be bound inside a single group. Although Windows
processor groups may be exposed in the hwloc hierarchy as hwloc Groups, they are also often merged into existing
hwloc objects such as NUMA nodes or Packages. This API provides explicit information about Windows processor
groups so that applications know whether binding to a large set of PUs may fail because it spans over multiple
Windows processor groups.

Generated by Doxygen

192 Topic Documentation

23.38.2 Function Documentation
23.38.2.1 hwloc_windows_get_nr_processor_groups()

int hwloc_windows_get_nr_processor_groups (
hwloc_topology_t topology,
unsigned long flags)

Get the number of Windows processor groups.

flags must be 0 for now.

Returns

at least 1 on success.

-1 on error, for instance if the topology does not match the current system (e.g. loaded from another machine
through XML).

23.38.2.2 hwloc_windows_get_processor_group_cpuset()

int hwloc_windows_get_processor_group_cpuset (
hwloc_topology_t topology,
unsigned pg_index,
hwloc_cpuset_t cpuset,
unsigned long flags)
Get the CPU-set of a Windows processor group.
Get the set of PU included in the processor group specified by pg_index. pg_index must be between 0 and
the value returned by hwloc_windows_get_nr_processor_groups() minus 1.
flags must be 0 for now.

Returns

0 on success.

-1 on error, for instance if pg__index is invalid, or if the topology does not match the current system (e.g.
loaded from another machine through XML).

23.39 Interoperability with glibc sched affinity

Functions

« inthwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_t topology, hwloc_const_cpuset_t hwlocset, cpu+«
_set_t xschedset, size_t schedsetsize)

« int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology, hwloc_cpuset_t hwlocset, const
cpu_set_t xschedset, size_t schedsetsize)

23.39.1 Detailed Description

This interface offers ways to convert between hwloc cpusets and glibc cpusets such as those manipulated by
sched_getaffinity() or pthread_attr_setaffinity_np().

Note

Topology topology must match the current machine.

23.39.2 Function Documentation
23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()

int hwloc_cpuset_from _glibc_sched_affinity (
hwloc_topology_t topology,
hwloc_cpuset_t hwlocset,
const cpu_set_t *x schedset,

size_t schedsetsize) [inline]

Generated by Doxygen

23.40 Interoperability with OpenCL 193

Convert glibc sched affinity CPU set schedset into hwloc CPU set.

This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input
parameter.

schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

int hwloc_cpuset_to_glibc_sched_affinity (
hwloc_topology_t topology,
hwloc_const_cpuset_t hwlocset,
cpu_set_t * schedset,
size_t schedsetsize) [inline]
Convert hwloc CPU set t oposet into glibc sched affinity CPU set schedset.
This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input
parameter.
schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Returns

0.

23.40 Interoperability with OpenCL

Functions

+ int hwloc_opencl_get_device_pci_busid (cl_device_id device, unsigned xdomain, unsigned *bus, unsigned
xdev, unsigned xfunc)

« int hwloc_opencl_get_device_cpuset (hwloc_topology_t topology, cl_device_id device, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (hwloc_topology_t topology, unsigned platform_«
index, unsigned device_index)

» hwloc_obj_t hwloc_opencl_get_device_osdev (hwloc_topology_t topology, cl_device_id device)

23.40.1 Detailed Description

This interface offers ways to retrieve topology information about OpenCL devices.
Only AMD and NVIDIA OpenCL implementations currently offer useful locality information about their devices.

23.40.2 Function Documentation
23.40.2.1 hwloc_opencl_get_device_cpuset()

int hwloc_opencl_get_device_cpuset (

hwloc_topology_t topology,

cl_device_id device,

hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to OpenCL device device.
Store in set the CPU-set describing the locality of the OpenCL device device.
Topology topology and device device must match the local machine. I/O devices detection and the OpenCL
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_opencl_get_device_osdev() and hwloc_opencl_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux with the AMD or NVIDIA OpenCL imple-
mentation; other systems will simply get a full cpuset.

Generated by Doxygen

194 Topic Documentation

Returns

0 on success.
-1 on error, for instance if the device could not be found.

23.40.2.2 hwloc_opencl_get_device_osdev()

hwloc_obj_t hwloc_opencl_get_device_osdev (
hwloc_topology_t topology,
cl_device_id device) [inline]
Get the hwloc OS device object corresponding to OpenCL device deviceX.

Returns

The hwloc OS device object corresponding to the given OpenCL device device.
NULL if none could be found, for instance if required OpenCL attributes are not available.

This function currently only works on AMD and NVIDIA OpenCL devices that support relevant OpenCL extensions.
hwloc_opencl_get_device_osdev_by_index() should be preferred whenever possible, i.e. when platform and device
index are known.

Topology topology and device device must match the local machine. I/O devices detection and the Open«
CL component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_opencl_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices
are filtered out).

23.40.2.3 hwloc_opencl_get_device_osdev_by_index()

hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned platform index,
unsigned device_index) [inline]
Get the hwloc OS device object corresponding to the OpenCL device for the given indexes.

Returns

The hwloc OS device object describing the OpenCL device whose platform index is plat form_index, and
whose device index within this platform if device_index.

NULL if there is none.

The topology t opology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. I/O devices detection and the OpenCL component must be enabled in the
topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.40.2.4 hwloc_opencl_get_device_pci_busid()

int hwloc_opencl_get_device_pci_busid (

cl_device_id device,

unsigned * domain,

unsigned * bus,

unsigned * dev,

unsigned * func) [inline]
Return the domain, bus and device IDs of the OpenCL device device.
Device device must match the local machine.

Generated by Doxygen

23.41 Interoperability with the CUDA Driver API 195

Returns

0 on success.
-1 on error, for instance if device information could not be found.

23.41 Interoperability with the CUDA Driver API

Functions

« int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology, CUdevice cudevice, int xdomain, int xbus,
int xdev)

+ int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology, CUdevice cudevice, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

23.41.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Driver API.

23.41.2 Function Documentation
23.41.2.1 hwloc_cuda_get_device_cpuset()

int hwloc_cuda_get_device_cpuset (

hwloc_topology_t topology,

CUdevice cudevice,

hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device cudevice.
Store in set the CPU-set describing the locality of the CUDA device cudevice.
Topology topology and device cudevice must match the local machine. 1/0O devices detection and the CUDA
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_cuda_get_device_osdev() and hwloc_cuda_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.
-1 on error, for instance if device information could not be found.

23.41.2.2 hwloc_cuda_get_device_osdev()

hwloc_obj_t hwloc_cuda_get_device_osdev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc OS device object corresponding to CUDA device cudevice.

Returns

The hwloc OS device object that describes the given CUDA device cudevice.
NULL if none could be found.
Topology topology and device cudevice must match the local machine. 1/O devices detection and the

CUDA component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_cuda_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices
are filtered out).

Generated by Doxygen

196 Topic Documentation

23.41.2.3 hwloc_cuda_get_device_osdev_by_index()

hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the CUDA device whose index is 1idx.

Returns

The hwloc OS device object describing the CUDA device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology
may be an XML import of a remote host. I/O devices detection and the CUDA component must be enabled in the
topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

This function is identical to hwloc_cudart_get_device_osdev_by_index().

23.41.2.4 hwloc_cuda_get_device_pci_ids()

int hwloc_cuda_get_device_pci_ids (

hwloc_topology_t topology,

CUdevice cudevice,

int % domain,

int % bus,

int * dev) [inline]
Return the domain, bus and device IDs of the CUDA device cudevice.
Device cudevice must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.41.2.5 hwloc_cuda_get_device_pcidev()

hwloc_obj_t hwloc_cuda_get_device_pcidev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc PCI device object corresponding to the CUDA device cudevice.

Returns
The hwloc PCI device object describing the CUDA device cudevice.

NULL if none could be found.

Topology t opology and device cudevice must match the local machine. 1/0O devices detection must be enabled
in topology topology. The CUDA component is not needed in the topology.

23.42 Interoperability with the CUDA Runtime API

Functions

« int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology, int idx, int xdomain, int xbus, int xdev)
« int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology, int idx, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int idx)

» hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

Generated by Doxygen

23.42 Interoperability with the CUDA Runtime API 197

23.42.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Runtime API.

23.42.2 Function Documentation
23.42.2.1 hwloc_cudart_get_device_cpuset()

int hwloc_cudart_get_device_cpuset (
hwloc_topology_t topology,
int idx,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device idx.
Store in set the CPU-set describing the locality of the CUDA device whose index is 1 dx.
Topology topology and device 1dx must match the local machine. I/O devices detection and the CUDA compo-
nent are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_cudart_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.42.2.2 hwloc_cudart_get_device_osdev_by_index()

hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]

Get the hwloc OS device object corresponding to the CUDA device whose index is 1idx.

Returns

The hwloc OS device object describing the CUDA device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology
may be an XML import of a remote host. I/O devices detection and the CUDA component must be enabled in the
topology. If not, the locality of the object may still be found using hwloc_cudart_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

This function is identical to hwloc_cuda_get_device_osdev_by_index().

23.42.2.3 hwloc_cudart_get_device_pci_ids()

int hwloc_cudart_get_device_pci_ids (

hwloc_topology_t topology,

int idx,

int % domain,

int * bus,

int % dev) [inline]
Return the domain, bus and device IDs of the CUDA device whose index is 1dx.
Device index idx must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Generated by Doxygen

198 Topic Documentation

23.42.2.4 hwloc_cudart_get_device_pcidev()

hwloc_obj_t hwloc_cudart_get_device_pcidev (
hwloc_topology_t topology,
int idx) [inline]
Get the hwloc PCI device object corresponding to the CUDA device whose index is 1dx.

Returns

The hwloc PCI device object describing the CUDA device whose index is 1 dx.
NULL if none could be found.

Topology topology and device idx must match the local machine. I/O devices detection must be enabled in
topology topology. The CUDA component is not needed in the topology.

23.43 Interoperability with the NVIDIA Management Library

Functions

« int hwloc_nvml_get_device_cpuset (hwloc_topology_t topology, nvmlIDevice_t device, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)
» hwloc_obj_t hwloc_nvml_get_device_osdev (hwloc_topology_t topology, nvmIDevice_t device)

23.43.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the NVIDIA Management
Library (NVML).

23.43.2 Function Documentation
23.43.2.1 hwloc_nvml_get_device_cpuset()

int hwloc_nvml_get_device_cpuset (

hwloc_topology_t topology,

nvmlDevice_t device,

hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to NVML device device.
Store in set the CPU-set describing the locality of the NVML device device.
Topology topology and device device must match the local machine. I/O devices detection and the NVML
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_nvml_get_device_osdev() and hwloc_nvml_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.43.2.2 hwloc_nvml_get_device_osdev()

hwloc_obj_t hwloc_nvml_get_device_osdev (
hwloc_topology_t topology,
nvmlDevice_t device) [inline]
Get the hwloc OS device object corresponding to NVML device device.

Generated by Doxygen

23.44 Interoperability with the ROCm SMI Management Library 199

Returns

The hwloc OS device object that describes the given NVML device device.
NULL if none could be found.

Topology topology and device device must match the local machine. /O devices detection and the
NVML component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_nvml_get_device_cpuset().

Note

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices
are filtered out).

23.43.2.3 hwloc_nvmi_get_device_osdev_by_index()

hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the NVML device whose index is 1 dx.

Returns

The hwloc OS device object describing the NVML device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology
may be an XML import of a remote host. 1/O devices detection and the NVML component must be enabled in the
topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.44 Interoperability with the ROCm SMI Management Library

Functions

« int hwloc_rsmi_get_device_cpuset (hwloc_topology_t topology, uint32_t dv_ind, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (hwloc_topology_t topology, uint32_t dv_ind)
» hwloc_obj_t hwloc_rsmi_get_device_osdev (hwloc_topology_t topology, uint32_t dv_ind)

23.44.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the ROCm SMI Management
Library.

23.44.2 Function Documentation
23.44.2.1 hwloc_rsmi_get_device_cpuset()

int hwloc_rsmi_get_device_cpuset (

hwloc_topology_t topology,

uint32_t dv_ind,

hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to AMD GPU device whose index is dv__ind.
Store in set the CPU-set describing the locality of the AMD GPU device whose index is dv_ind.
Topology topology and device dv_ind must match the local machine. I/O devices detection and the ROCm
SMI component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_rsmi_get_device_osdev() and hwloc_rsmi_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Generated by Doxygen

200 Topic Documentation

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.44.2.2 hwloc_rsmi_get_device_osdev()

hwloc_obj_t hwloc_rsmi_get_device_osdev (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to AMD GPU device, whose index is dv_ind.

Returns

The hwloc OS device object that describes the given AMD GPU, whose index is dv__ind.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. I/O devices detection and the ROCm
SMI component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_rsmi_get_device_cpuset().

Note

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices
are filtered out).

23.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to the AMD GPU device whose index is dv__ind.

Returns

The hwloc OS device object describing the AMD GPU device whose index is dv__ind.
NULL if none could be found.

The topology t opology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. 1/O devices detection and the ROCm SMI component must be enabled in the

topology.
Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.45 Interoperability with the oneAPI Level Zero interface.

Functions

« inthwloc_levelzero_get_device_cpuset (hwloc_topology_ttopology, ze_device_handle_t device, hwloc_cpuset_t
set)

« int hwloc_levelzero_get_sysman_device_cpuset (hwloc_topology_t topology, zes_device_handle_t device,
hwloc_cpuset_t set)

» hwloc_obj_t hwloc_levelzero_get_device_osdev (hwloc_topology_t topology, ze_device_handle_t device)

» hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (hwloc_topology_t topology, zes_device_handle«
_t device)

Generated by Doxygen

23.45 Interoperability with the oneAPI Level Zero interface. 201

23.45.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the Level Zero API, both for
main Core devices (ZE API) and the Sysman devices (ZES API).

23.45.2 Function Documentation
23.45.2.1 hwloc_levelzero_get_device_cpuset()

int hwloc_levelzero_get_device_cpuset (
hwloc_topology_t topology,
ze_device_handle_t device,
hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to the Level Zero device device.
Store in set the CPU-set describing the locality of the Level Zero device device.
Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with zelnit(). 1/O devices detection and the Level Zero component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_levelzero_get_device_osdev().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Note

zeDevicePciGetPropertiesExt() must be supported, or the entire machine locality will be returned.

23.45.2.2 hwloc_levelzero_get_device_osdev()

hwloc_obj_t hwloc_levelzero_get_device_osdev (
hwloc_topology_t topology,
ze_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero device device.

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. The Level Zero library must have been
initialized with zelnit(). I/O devices detection and the Level Zero component must be enabled in the topology. If not,
the locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZE device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main
hwloc OS device is returned instead of one of its children.

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCl devices
are filtered out).

zeDevicePciGetPropertiesExt() must be supported.

23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()

int hwloc_levelzero_get_sysman_device_cpuset (
hwloc_topology_t topology,
zes_device_handle_t device,

hwloc_cpuset_t set) [inline]

Generated by Doxygen

202 Topic Documentation

Get the CPU set of logical processors that are physically close to the Level Zero Sysman device device.

Store in set the CPU-set describing the locality of the Level Zero device device.

Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with Sysman enabled with zeslnit(). 1/O devices detection and the Level Zero component are not needed
in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_levelzero_get_device_osdev().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (
hwloc_topology_t topology,
zes_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero Sysman device device.

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.
Topology topology and device dv_ind must match the local machine. The Level Zero library must have been

initialized with Sysman enabled with zeslnit(). I/O devices detection and the Level Zero component must be enabled
in the topology. If not, the locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZES device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main
hwloc OS device is returned instead of one of its children.

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices
are filtered out).

23.46 Interoperability with OpenGL displays

Functions

» hwloc_obj_t hwloc_gl_get display_osdev_by port_device (hwloc_topology t topology, unsigned port, un-
signed device)

» hwloc_obj_t hwloc_gl_get_display_osdev_by_name (hwloc_topology_t topology, const char xname)

« int hwloc_gl_get_display_by osdev (hwloc_topology_t topology, hwloc_obj_t osdev, unsigned xport, un-
signed xdevice)

23.46.1 Detailed Description

This interface offers ways to retrieve topology information about OpenGL displays.
Only the NVIDIA display locality information is currently available, using the NV-CONTROL X11 extension and the
NVCitrl library.

23.46.2 Function Documentation
23.46.2.1 hwloc_gl_get_display_by_osdev()

int hwloc_gl_get_display_by_osdev (
hwloc_topology_t topology,

hwloc_obj_t osdev,

Generated by Doxygen

23.47 Interoperability with OpenFabrics 203

unsigned * port,

unsigned * device) [inline]
Get the OpenGL display port and device corresponding to the given hwloc OS object.
Retrieves the OpenGL display port (server) in port and device (screen) in screen that correspond to the given
hwloc OS device object.

Returns

0 on success.
-1 if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

23.46.2.2 hwloc_gl_get_display_osdev_by name()

hwloc_obj_t hwloc_gl_get_display_osdev_by_name (
hwloc_topology_t topology,
const char *x name) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by name.
Returns
The hwloc OS device object describing the OpenGL display whose name is name, built as ":port.device" such
as ":0.0".
NULL if none could be found.
The topology t opology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.
Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.46.2.3 hwloc_gl_get_display_osdev_by port_device()

hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (
hwloc_topology_t topology,
unsigned port,
unsigned device) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by port and device index.
Returns
The hwloc OS device object describing the OpenGL display whose port (server) is port and device (screen)
is device.
NULL if none could be found.
The topology t opology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. 1/O devices detection and the GL component must be enabled in the topology.
Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.47 Interoperability with OpenFabrics

Functions

« int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology, struct ibv_device xibdev, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_ibv_get_device_osdev_by name (hwloc_topology_t topology, const char xibname)
» hwloc_obj_t hwloc_ibv_get_device_osdev (hwloc_topology_t topology, struct ibv_device xibdev)

Generated by Doxygen

204 Topic Documentation

23.47.1 Detailed Description

This interface offers ways to retrieve topology information about OpenFabrics devices (InfiniBand, Omni-Path, us«
NIC, etc).

23.47.2 Function Documentation
23.47.2.1 hwloc_ibv_get_device_cpuset()

int hwloc_ibv_get_device_cpuset (
hwloc_topology_t topology,
struct ibv_device * ibdev,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device ibdev.
Store in set the CPU-set describing the locality of the OpenFabrics device ibdev (InfiniBand, etc).
Topology topology and device ibdev must match the local machine. I/O devices detection is not needed in the
topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects
should be used instead, see hwloc_ibv_get_device_osdev() and hwloc_ibv_get_device_osdev_by name().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.47.2.2 hwiloc_ibv_get_device_osdev()

hwloc_obj_t hwloc_ibv_get_device_osdev (
hwloc_topology_t topology,
struct ibv_device x ibdev) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device ibdev.

Returns
The hwloc OS device object describing the OpenFabrics device ibdev (InfiniBand, etc).

NULL if none could be found.

Topology topology and device ibdewv must match the local machine. 1/O devices detection must be enabled in
the topology. If not, the locality of the object may still be found using hwloc_ibv_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

23.47.2.3 hwloc_ibv_get_device_osdev_by_name()

hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (
hwloc_topology_t topology,
const char *x ibname) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device named ibname.

Returns

The hwloc OS device object describing the OpenFabrics device (InfiniBand, Omni-Path, usNIC, etc) whose
name is ibname (mix5_0, hfi1_0, usnic_0, qib0, etc).

NULL if none could be found.
The name ibname is usually obtained from ibv_get_device_name().

The topology t opology does not necessarily have to match the current machine. For instance the topology may
be an XML import of a remote host. I/O devices detection must be enabled in the topology.

Generated by Doxygen

23.48 Topology differences 205

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

23.48 Topology differences

Data Structures

* union hwloc_topology_diff_obj_attr_u
+ union hwloc_topology_diff_u

Typedefs

« typedef enum hwloc_topology_diff obj_attr_type_e hwloc_topology_diff obj_attr_type_t
« typedef enum hwloc_topology_diff type e hwloc_topology_diff_type_t
« typedef union hwloc_topology_diff_u * hwloc_topology_diff_t

Enumerations

- enum hwloc_topology diff obj attr type e { HWLOC TOPOLOGY_DIFF_OBJ_ATTR_SIZE , HWLOC_TOPOLOGY DIFF_OF
, HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO }
- enum hwloc_topology _diff_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX

}
» enum hwloc_topology_diff apply_flags_e { HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE }

Functions

« int hwloc_topology_diff_build (hwloc_topology_t topology, hwloc_topology_t newtopology, unsigned long
flags, hwloc_topology_diff_t *diff)

« int hwloc_topology_diff_apply (hwloc_topology_t topology, hwloc_topology_diff_t diff, unsigned long flags)

« int hwloc_topology_diff_destroy (hwloc_topology_diff_t diff)

+ int hwloc_topology_diff_load_xml (const char xxmlpath, hwloc_topology_diff_t xdiff, char xxrefname)

« int hwloc_topology_diff_export_xml (hwloc_topology_diff_t diff, const char *refname, const char *xmlpath)

+ int hwloc_topology_diff_load_xmlbuffer (const char xxmlbuffer, int buflen, hwloc_topology_diff_t *diff, char
xxrefname)

« int hwloc_topology_diff_export_xmlbuffer (hwloc_topology_diff_t diff, const char xrefname, char xxxmlbuffer,
int xbuflen)

23.48.1 Detailed Description

Applications that manipulate many similar topologies, for instance one for each node of a homogeneous cluster,
may want to compress topologies to reduce the memory footprint.

This file offers a way to manipulate the difference between topologies and export/import it to/from XML. Compression
may therefore be achieved by storing one topology entirely while the others are only described by their differences
with the former. The actual topology can be reconstructed when actually needed by applying the precomputed
difference to the reference topology.

This interface targets very similar nodes. Only very simple differences between topologies are actually supported,
for instance a change in the memory size, the name of the object, or some info attribute. More complex differences
such as adding or removing objects cannot be represented in the difference structures and therefore return errors.
Differences between object sets or topology-wide allowed sets, cannot be represented either.

It means that there is no need to apply the difference when looking at the tree organization (how many levels, how
many objects per level, what kind of objects, CPU and node sets, etc) and when binding to objects. However the
difference must be applied when looking at object attributes such as the name, the memory size or info attributes.

23.48.2 Typedef Documentation

23.48.2.1 hwloc_topology_diff _obj_attr_type_t

typedef enum hwloc_topology_diff_obj_attr_type_e hwloc_topology_diff_obj_attr_type_t
Type of one object attribute difference.

Generated by Doxygen

206 Topic Documentation

23.48.2.2 hwloc_topology_diff_t

typedef union hwloc_topology_diff_u * hwloc_topology_diff_t
One element of a difference list between two topologies.

23.48.2.3 hwloc_topology_diff_type_t

typedef enum hwloc_topology_diff_ type_e hwloc_topology_diff_ type_t
Type of one element of a difference list.

23.48.3 Enumeration Type Documentation

23.48.3.1 hwloc_topology_diff _apply_flags_e

enum hwloc_topology_diff_ apply_flags_e
Flags to be given to hwloc_topology_diff_apply().

Enumerator

HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE ‘ Apply topology diff in reverse direction.

23.48.3.2 hwloc_topology_diff obj_attr_type_e

enum hwloc_topology_diff obj_attr_type_e
Type of one object attribute difference.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE | The object local memory is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atir_uint64_s
(and the index field is ignored).
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME | The object name is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atir_string_s
(and the name field is ignored).
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO | the value of an info attribute is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atir_string_s.

23.48.3.3 hwloc_topology_diff type_e

enum hwloc_topology_diff_type_e
Type of one element of a difference list.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR | An object attribute was changed. The union is a
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s.
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX | The difference is too complex, it cannot be represented. The
difference below this object has not been checked.
hwloc_topology_diff_build() will return 1. The union is a
hwloc_topology_diff_u::hwloc_topology_diff too_complex_s.

Generated by Doxygen

23.48 Topology differences 207

23.48.4 Function Documentation
23.48.4.1 hwloc_topology_diff_apply()

int hwloc_topology_diff_ apply (
hwloc_topology_t topology,
hwloc_topology_diff_t diff,
unsigned long flags)
Apply a topology diff to an existing topology.
flags is an OR'ed set of hwloc_topology_diff apply_flags_e.
The new topology is modified in place. hwloc_topology_dup() may be used to duplicate it before patching.
If the difference cannot be applied entirely, all previous applied elements are unapplied before returning.

Returns

0 on success.

-N if applying the difference failed while trying to apply the N-th part of the difference. For instance -1 is
returned if the very first difference element could not be applied.

23.48.4.2 hwloc_topology_diff_build()

int hwloc_topology_diff build (

hwloc_topology_t topology,

hwloc_topology_t newtopology,

unsigned long flags,

hwloc_topology_diff_t *x diff)
Compute the difference between 2 topologies.
The difference is stored as a list of hwloc_topology diff t entries starting at diff. It is computed by doing a
depth-first traversal of both topology trees simultaneously.
If the difference between 2 objects is too complex to be represented (for instance if some objects have different
types, or different numbers of children), a special diff entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX
is queued. The computation of the diff does not continue below these objects. So each such diff entry means that
the difference between two subtrees could not be computed.

Returns
0 if the difference can be represented properly.
0 with di £ £ pointing to NULL if there is no difference between the topologies.

1 if the difference is too complex (see above). Some entries in the list will be of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLE
-1 on any other error.

Note

flags is currently not used. It should be 0.
The output diff has to be freed with hwloc_topology_diff_destroy().

The output diff can only be exported to XML or passed to hwloc_topology_diff_apply() if 0 was returned, i.e. if
no entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is listed.

The output diff may be modified by removing some entries from the list. The removed entries should be freed
by passing them to to hwloc_topology_diff_destroy() (possible as another list).

23.48.4.3 hwloc_topology_diff_destroy()

int hwloc_topology_diff_destroy (
hwloc_topology_diff_t diff)
Destroy a list of topology differences.

Returns

0.

Generated by Doxygen

208 Topic Documentation

23.48.4.4 hwloc_topology_diff_export_xml()

int hwloc_topology_diff_ export_xml (

hwloc_topology_diff_t diff,

const char x refname,

const char * xmlpath)
Export a list of topology differences to a XML file.
If not NULL, refname defines an identifier string for the reference topology which was used as a base when
computing this difference. This identifier is usually the name of the other XML file that contains the reference
topology. This attribute is given back when reading the diff from XML.

Returns

0 on success, -1 on error.

23.48.4.5 hwloc_topology_diff_export_xmlbuffer()

int hwloc_topology_diff_ export_xmlbuffer (

hwloc_topology_diff_t diff,

const char x refname,

char *xx xmlbuffer,

int % buflen)
Export a list of topology differences to a XML buffer.
If not NULL, refname defines an identifier string for the reference topology which was used as a base when
computing this difference. This identifier is usually the name of the other XML file that contains the reference
topology. This attribute is given back when reading the diff from XML.
The returned buffer ends with a \ 0 that is included in the returned length.

Returns

0 on success, -1 on error.

Note

The XML buffer should later be freed with hwloc_free_xmlbuffer().

23.48.4.6 hwloc_topology_diff _load_xml()

int hwloc_topology_diff_load_xml (
const char * xmlpath,
hwloc_topology_diff t *x diff,
char %% refname)
Load a list of topology differences from a XML file.
If not NULL, refname will be filled with the identifier string of the reference topology for the difference file, if any
was specified in the XML file. This identifier is usually the name of the other XML file that contains the reference

topology.
Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

23.48.4.7 hwloc_topology_diff_load_xmibuffer()

int hwloc_topology_diff load_xmlbuffer (
const char x xmlbuffer,
int buflen,

Generated by Doxygen

23.49 Sharing topologies between processes 209

hwloc_topology_diff_t *x diff,

char %% refname)
Load a list of topology differences from a XML buffer.
Build a list of differences from the XML memory buffer given at xm1buf fer and of length buflen (including an
ending \ 0). This buffer may have been filled earlier with hwloc_topology_diff_export_xmibuffer().
If not NULL, refname will be filled with the identifier string of the reference topology for the difference file, if any
was specified in the XML file. This identifier is usually the name of the other XML file that contains the reference
topology.

Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

23.49 Sharing topologies between processes

Functions

« int hwloc_shmem_topology_get_length (hwloc_topology_t topology, size_t xlengthp, unsigned long flags)

« int hwloc_shmem_topology_write (hwloc_topology_t topology, int fd, hwloc_uint64_t fileoffset, void xmmap+«
_address, size_t length, unsigned long flags)

+ int hwloc_shmem_topology_adopt (hwloc_topology t *topologyp, int fd, hwloc_uint64 t fileoffset, void
xmmap_address, size_t length, unsigned long flags)

23.49.1 Detailed Description

These functions are used to share a topology between processes by duplicating it into a file-backed shared-memory

buffer.

The master process must first get the required shared-memory size for storing this topology with hwloc_shmem_topology_get_length()
Then it must find a virtual memory area of that size that is available in all processes (identical virtual addresses in

all processes). On Linux, this can be done by comparing holes found in /proc/<pid>/maps for each process.

Once found, it must open a destination file for storing the buffer, and pass it to hwloc_shmem_topology_write()

together with virtual memory address and length obtained above.

Other processes may then adopt this shared topology by opening the same file and passing it to
hwloc_shmem_topology_adopt() with the exact same virtual memory address and length.

23.49.2 Function Documentation
23.49.2.1 hwloc_shmem_topology adopt()

int hwloc_shmem_topology_adopt (

hwloc_topology_t * topologyp,

int fd,

hwloc_uintod4_t fileoffset,

void * mmap_address,

size_t Iength,

unsigned long flags)
Adopt a shared memory topology stored in a file.
Map a file in virtual memory and adopt the topology that was previously stored there with hwloc_shmem_topology_write().
The returned adopted topology in topologyp can be used just like any topology. And it must be destroyed with
hwloc_topology_destroy() as usual.
However the topology is read-only. For instance, it cannot be modified with hwloc_topology_restrict() and object
userdata pointers cannot be changed.
The segment of the file pointed by descriptor f£d, starting at offset fileof fset, and of length Length (in bytes),
will be mapped at virtual address mmap_address.
The file pointed by descriptor £d, the offset fileoffset, the requested mapping virtual address mmap_+«
address and the length 1ength must be identical to what was given to hwloc_shmem_topology_write() earlier.

Generated by Doxygen

210

Topic Documentation

Note

Flags f1ags are currently unused, must be 0.

The object userdata pointer should not be used unless the process that created the shared topology also
placed userdata-pointed buffers in shared memory.

This function takes care of calling hwloc_topology_abi_check().

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and length isn't
available in the process.

-1 with errno set to EINVAL if fileoffset, mmap_address or length aren't page-aligned, or do not
match what was given to hwloc_shmem_topology_write() earlier.

-1 with errno set to EINVAL if the layout of the topology structure is different between the writer process and
the adopter process.

23.49.2.2 hwloc_shmem_topology_get_length()

int hwloc_shmem_topology_get_length (

hwloc_topology_t topology,
size_t * lengthp,
unsigned long flags)

Get the required shared memory length for storing a topology.
This length (in bytes) must be used in hwloc_shmem_topology_write() and hwloc_shmem_topology_adopt() later.

Returns

Note

the length, or -1 on error, for instance if flags are invalid.

Flags f1ags are currently unused, must be 0.

23.49.2.3 hwloc_shmem_topology write()

int hwloc_shmem_topology_write (

hwloc_topology_t topology,
int fd,

hwloc_uintod4_t fileoffset,
void * mmap_address,
size_t Iength,

unsigned long flags)

Duplicate a topology to a shared memory file.

Temporarily map a file in virtual memory and duplicate the topology t opology by allocating duplicates in there.
The segment of the file pointed by descriptor £d, starting at offset fileoffset, and of length Length (in bytes),
will be temporarily mapped at virtual address mmap_address during the duplication.

The mapping length 1ength must have been previously obtained with hwloc_shmem_topology_get_length() and
the topology must not have been modified in the meantime.

Note

Flags f1ags are currently unused, must be 0.

The object userdata pointer is duplicated but the pointed buffer is not. However the caller may also allocate it
manually in shared memory to share it as well.

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and length isn't
available in the process.

-1 with errno setto EINVAL if fileoffset, mmap_address or length aren't page-aligned.

Generated by Doxygen

23.50 Components and Plugins: Discovery components and backends 211

23.50 Components and Plugins: Discovery components and backends

Data Structures

« struct hwloc_disc_component
« struct hwloc_disc_status
« struct hwloc_backend

Typedefs

« typedef enum hwloc_disc_phase_e hwloc_disc_phase_t

Enumerations

» enum hwloc_disc_phase_e {
HWLOC_DISC PHASE GLOBAL , HWLOC DISC_PHASE_CPU , HWLOC_DISC PHASE_MEMORY ,
HWLOC_DISC PHASE PCI,
HWLOC_DISC PHASE IO , HWLOC DISC PHASE MISC , HWLOC_DISC PHASE ANNOTATE ,
HWLOC_DISC_PHASE_TWEAK }

» enum hwloc_disc_status_flag_e { HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCES }

Functions

« struct hwloc_backend x hwloc_backend_alloc (struct hwloc_topology xtopology, struct hwloc_disc_component
xcomponent)
« int hwloc_backend_enable (struct hwloc_backend xbackend)

23.50.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.50.2 Typedef Documentation

23.50.2.1 hwloc_disc_phase_t

typedef enum hwloc_disc_phase_e hwloc_disc_phase_t
Discovery phase.

23.50.3 Enumeration Type Documentation
23.50.3.1 hwloc_disc_phase_e

enum hwloc_disc_phase_e
Discovery phase.

Enumerator

HWLOC_DISC_PHASE_GLOBAL | xml or synthetic, platform-specific components such as bgqg. Discovers
everything including CPU, memory, I/O and everything else. A
component with a Global phase usually excludes all other phases.

HWLOC_DISC_PHASE_CPU | CPU discovery.
HWLOC_DISC_PHASE_MEMORY | Attach memory to existing CPU objects.
HWLOC_DISC_PHASE_PCI | Attach PCI devices and bridges to existing CPU objects.

HWLOC_DISC_PHASE_IO | I/O discovery that requires PCI devices (OS devices such as OpenCL,
CUDA, etc.).

HWLOC_DISC_PHASE_MISC | Misc objects that gets added below anything else.
HWLOC_DISC_PHASE_ANNOTATE | Annotating existing objects, adding distances, etc.

Generated by Doxygen

212

Topic Documentation

Enumerator

HWLOC_DISC_PHASE_TWEAK

Final tweaks to a ready-to-use topology. This phase runs once the
topology is loaded, before it is returned to the topology. Hence it may
only use the main hwloc API for modifying the topology, for instance by
restricting it, adding info attributes, etc.

23.50.3.2 hwloc_disc_status_flag_e

enum hwloc_disc_status_flag_e
Discovery status flags.

Enumerator

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED+« | The sets of allowed resources were already retrieved.

_RESOURCES

23.50.4 Function Documentation

23.50.4.1 hwloc_backend_alloc()

struct hwloc_backend * hwloc_backend_alloc (

struct hwloc_topology * topology,

struct hwloc_disc_component * component)
Allocate a backend structure, set good default values, initialize backend->component and topology, etc. The caller
will then modify whatever needed, and call hwloc_backend_enable().

23.50.4.2 hwloc_backend_enable()

int hwloc_backend_enable (

struct hwloc_backend * backend)
Enable a previously allocated and setup backend.

23.51 Components and Plugins: Generic components

Data Structures

« struct hwloc_component

Typedefs

« typedef enum hwloc_component_type_e hwloc_component_type t

Enumerations

+ enum hwloc_component_type_e { HWLOC_COMPONENT_TYPE_DISC , HWLOC_COMPONENT_TYPE_XML

}

Functions

« int hwloc_plugin_check_namespace (const char xpluginname, const char xsymbol)

23.51.1 Detailed Description

Generated by Doxygen

23.52 Components and Plugins: Core functions to be used by components 213

Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.51.2 Typedef Documentation
23.51.2.1 hwloc_component_type_t

typedef enum hwloc_component_type_e hwloc_component_type_t
Generic component type.

23.51.3 Enumeration Type Documentation
23.51.3.1 hwloc_component_type e

enum hwloc_component_type_e

Generic component type.

Enumerator

HWLOC_COMPONENT_TYPE_DISC | The data field must point to a struct hwloc_disc_component.
HWLOC_COMPONENT_TYPE_XML | The data field must point to a struct hwloc_xml_component.

23.51.4 Function Documentation
23.51.4.1 hwloc_plugin_check_namespace()

int hwloc_plugin_check_namespace (
const char * pluginname,
const char * symbol) [inline]
Make sure that plugins can lookup core symbols.
This is a sanity check to avoid lazy-lookup failures when libhwloc is loaded within a plugin, and later tries to load its
own plugins. This may fail (and abort the program) if libhwloc symbols are in a private namespace.

Returns

0 on success.

-1 if the plugin cannot be successfully loaded. The caller plugin init() callback should return a negative error
code as well.

Plugins should call this function in their init() callback to avoid later crashes if lazy symbol resolution is used by the
upper layer that loaded hwloc (e.g. OpenCL implementations using dlopen with RTLD_LAZY).

Note
The build system must define HWLOC_INSIDE_PLUGIN if and only if building the caller as a plugin.

This function should remain inline so plugins can call it even when they cannot find libhwloc symbols.

23.52 Components and Plugins: Core functions to be used by
components

Macros
+ #define HWLOC_SHOW_CRITICAL_ERRORS() (hwloc_hide_errors() < 2)
+ #define HWLOC_SHOW_ALL_ERRORS() (hwloc_hide_errors() == 0)
Functions

* int hwloc_hide_errors (void)

Generated by Doxygen

214 Topic Documentation

» hwloc_obj_t hwloc__insert_object_by_cpuset (struct hwloc_topology =xtopology, hwloc_obj t root,
hwloc_obj_t obj, const char xreason)

+ void hwloc_insert_object_by_parent (struct hwloc_topology *xtopology, hwloc_obj_t parent, hwloc_obj_t obj)

» hwloc_obj_t hwloc_alloc_setup_object (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned os_«
index)

+ int hwloc_obj_add_children_sets (hwloc_obj_t obj)

« int hwloc_topology_reconnect (hwloc_topology_t topology, unsigned long flags)

23.52.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.52.2 Macro Definition Documentation
23.52.2.1 HWLOC_SHOW_ALL_ERRORS

#define HWLOC_SHOW_ALL_ERRORS() (hwloc_hide_errors() == 0)

23.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

#define HWLOC_SHOW_CRITICAL_ERRORS() (hwloc_hide_errors() < 2)

23.52.3 Function Documentation
23.52.3.1 hwloc__insert_object_by cpuset()

hwloc_obj_t hwloc__insert_object_by_cpuset (

struct hwloc_topology * topology,

hwloc_obij_t root,

hwloc_obj_t obj,

const char x reason)
Add an object to the topology.
Insert new object obj in the topology starting under existing object root (if NULL, the topology root object is
used).
It is sorted along the tree of other objects according to the inclusion of cpusets, to eventually be added as a child of
the smallest object including this object.
If the cpuset is empty, the type of the object (and maybe some attributes) must be enough to find where to insert
the object. This is especially true for NUMA nodes with memory and no CPUs.
The given object should not have children.
This shall only be called before levels are built.
The caller should check whether the object type is filtered-out before calling this function.
The topology cpuset/nodesets will be enlarged to include the object sets.
reason is a unigue string identifying where and why this insertion call was performed (it will be displayed in case
of internal insertion error).
Returns the object on success. Returns NULL and frees obj on error. Returns another object and frees obj if it was
merged with an identical pre-existing object.

23.52.3.2 hwloc_alloc_setup_object()

hwloc_obj_t hwloc_alloc_setup_object (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned os_index)
Allocate and initialize an object of the given type and physical index.
If os_index is unknown or irrelevant, use HWLOC_UNKNOWN_INDEX.

Generated by Doxygen

23.53 Components and Plugins: Filtering objects 215

23.52.3.3 hwloc_hide_errors()

int hwloc_hide_errors (
void)
Check whether error messages are hidden.
Callers should print critical error messages (e.g. invalid hw topo info, invalid config) only if this function returns
strictly less than 2.
Callers should print non-critical error messages (e.g. failure to initialize CUDA) if this function returns 0.
This function return 1 by default (show critical only), 0 in Istopo (show all), or anything set in HWLOC_HIDE_«
ERRORS in the environment.
Use macros HWLOC_SHOW_CRITICAL_ERRORS() and HWLOC_SHOW_ALL_ERRORS() for clarity.

23.52.3.4 hwloc_insert_object_by_parent()

void hwloc_insert_object_by_parent (

struct hwloc_topology * topology,

hwloc_obj_t parent,

hwloc_obj_t obj)
Insert an object somewhere in the topology.
It is added as the last child of the given parent. The cpuset is completely ignored, so strange objects such as I/O
devices should preferably be inserted with this.
When used for "normal” children with cpusets (when importing from XML when duplicating a topology), the caller
should make sure that:

« children are inserted in order,
« children cpusets do not intersect.

The given object may have normal, I/O or Misc children, as long as they are in order as well. These children must
have valid parent and next_sibling pointers.
The caller should check whether the object type is filtered-out before calling this function.

23.52.3.5 hwloc_obj_add_children_sets()

int hwloc_obj_add_children_sets (
hwloc_obj_t obj)
Setup object cpusets/nodesets by OR'ing its children.
Used when adding an object late in the topology. Will update the new object by OR'ing all its new children sets.
Used when PCI backend adds a hostbridge parent, when distances add a new Group, etc.

23.52.3.6 hwloc_topology_reconnect()

int hwloc_topology_reconnect (
hwloc_topology_t topology,
unsigned long flags)
Request a reconnection of children and levels in the topology.
May be used by backends during discovery if they need arrays or lists of object within levels or children to be fully
connected.
flags is currently unused, must 0.

23.53 Components and Plugins: Filtering objects

Functions

« int hwloc_filter_check_pcidev_subtype_important (unsigned classid)

« int hwloc_filter_check_osdev_subtype_important (hwloc_obj_osdev_type_t subtype)

« int hwloc_filter_check_keep_object_type (hwloc_topology_t topology, hwloc_obj_type_t type)
« int hwloc_filter_check_keep_object (hwloc_topology_t topology, hwloc_obj_t obj)

Generated by Doxygen

216

Topic Documentation

23.53.1 Detailed Description

Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.53.2 Function Documentation

23.53.2.1 hwloc_filter_check_keep_object()

int hwloc_filter_check_keep_object (

hwloc_topology_t topology,
hwloc_obj_t obj) [inline]

Check whether the given object should be filtered-out.

Returns

1 if the object type should be kept, 0 otherwise.

23.53.2.2 hwloc_filter_check_keep_object_type()

int hwloc_filter_check_keep_object_type (

hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]

Check whether a non-I/O object type should be filtered-out.
Cannot be used for I/O objects.

Returns

1 if the object type should be kept, 0 otherwise.

23.53.2.3 hwiloc_filter_check_osdev_subtype_important()

int hwloc_filter_check_osdev_subtype_important (

hwloc_obj_osdev_type_t subtype) [inline]

Check whether the given OS device subtype is important.

Returns

1 if important, 0 otherwise.

23.53.2.4 hwloc_filter_check_pcidev_subtype_important()

int hwloc_filter_check_pcidev_subtype_important (

unsigned classid) [inline]

Check whether the given PCI device classid is important.

Returns

1 if important, 0 otherwise.

23.54 Components and Plugins: helpers for PCI discovery

Functions

unsigned hwloc_pcidisc_find_cap (const unsigned char xconfig, unsigned cap)

int hwloc_pcidisc_find_linkspeed (const unsigned char xconfig, unsigned offset, float xlinkspeed)
hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (unsigned device_class, const unsigned char xconfig)
int hwloc_pcidisc_find_bridge_buses (unsigned domain, unsigned bus, unsigned dev, unsigned func, un-
signed xsecondary_busp, unsigned xsubordinate_busp, const unsigned char xconfig)

void hwloc_pcidisc_tree_insert_by busid (struct hwloc_obj sxtreep, struct hwloc_obj xobj)

int hwloc_pcidisc_tree_attach (struct hwloc_topology *topology, struct hwloc_obj xtree)

Generated by Doxygen

23.54 Components and Plugins: helpers for PCl discovery 217

23.54.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.54.2 Function Documentation
23.54.2.1 hwloc_pcidisc_check_bridge_type()

hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (

unsigned device_class,

const unsigned char * config
Return the hwloc object type (PCI device or Bridge) for the given class and configuration space.
This function requires 16 bytes of common configuration header at the beginning of config.

23.54.2.2 hwloc_pcidisc_find_bridge_buses()

int hwloc_pcidisc_find bridge_buses (

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func,

unsigned * secondary_busp,

unsigned * subordinate_ busp,

const unsigned char * config
Fills the attributes of the given PCI bridge using the given PCI config space.
This function requires 32 bytes of common configuration header at the beginning of config.
Returns -1 and destroys /p obj if bridge fields are invalid.

23.54.2.3 hwloc_pcidisc_find_cap()

unsigned hwloc_pcidisc_find_cap (
const unsigned char * config,
unsigned cap)
Return the offset of the given capability in the PCI config space buffer.
This function requires a 256-bytes config space. Unknown/unavailable bytes should be set to 0xff.

23.54.2.4 hwloc_pcidisc_find_linkspeed()

int hwloc_pcidisc_find_linkspeed (
const unsigned char * config,
unsigned offset,
float * linkspeed)
Fill linkspeed by reading the PCI config space where PCI_CAP_ID_EXP is at position offset.
Needs 20 bytes of EXP capability block starting at offset in the config space for registers up to link status.

23.54.2.5 hwloc_pcidisc_tree_attach()

int hwloc_pcidisc_tree_attach (
struct hwloc_topology * topology,
struct hwloc_obj * tree)
Add some hostbridges on top of the given tree of PCI objects and attach them to the topology.
Other backends may lookup PCI objects or localities (for instance to attach OS devices) by using hwloc_pcidisc_+«
find_by_busid() or hwloc_pcidisc_find_busid_parent().

23.54.2.6 hwloc_pcidisc_tree_insert_by_busid()

void hwloc_pcidisc_tree_insert_by_busid (
struct hwloc_obj #**x treep,

struct hwloc_obj * obj)

Generated by Doxygen

218 Topic Documentation

Insert a PCI object in the given PCI tree by looking at PCI bus IDs.
If t reep points to NULL, the new object is inserted there.

23.55 Components and Plugins: finding PCI objects during other
discoveries

Functions

« struct hwloc_obj * hwloc_pci_find_parent_by_busid (struct hwloc_topology *topology, unsigned domain, un-
signed bus, unsigned dev, unsigned func)

« struct hwloc_obj * hwloc_pci_find_by_busid (struct hwloc_topology *topology, unsigned domain, unsigned
bus, unsigned dev, unsigned func)

23.55.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.55.2 Function Documentation
23.55.2.1 hwloc_pci_find_by_busid()

struct hwloc_obj % hwloc_pci_find_by_busid (
struct hwloc_topology * topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func)
Find the PCI device or bridge matching a PCI bus ID exactly.
This is useful for adding specific information about some objects based on their PCl id. When it comes to attaching
objects based on PCI locality, hwloc_pci_find_parent_by_busid() should be preferred.

23.55.2.2 hwloc_pci_find_parent_by_busid()

struct hwloc_obj % hwloc_pci_find_parent_by_busid (

struct hwloc_topology * topology,

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func)
Find the object or a parent of a PCl bus ID.
When attaching a new object (typically an OS device) whose locality is specified by PCI bus ID, this function returns
the PCI object to use as a parent for attaching.
If the exact PCI device with this bus ID exists, it is returned. Otherwise (for instance if it was filtered out), the function
returns another object with similar locality (for instance a parent bridge, or the local CPU Package).

23.56 Components and Plugins: distances

Typedefs

« typedef void * hwloc_backend_distances_add_handle_t

Functions

» hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (hwloc_topology t topol-
ogy, const char xname, unsigned long kind, unsigned long flags)

Generated by Doxygen

23.56 Components and Plugins: distances 219

« int hwloc_backend_distances_add_values (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned nbobjs, hwloc_obj_t xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« int hwloc_backend_distances_add_commit (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned long flags)

23.56.1 Detailed Description
Note
These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.56.2 Typedef Documentation
23.56.2.1 hwloc_backend_distances_add_handle_t

typedef voidx hwloc_backend_distances_add_handle_t
Handle to a new distances structure during its addition to the topology.

23.56.3 Function Documentation
23.56.3.1 hwloc_backend_distances_add_commit()

int hwloc_backend_distances_add_commit (
hwloc_topology_t topology,
hwloc_backend_distances_add_handle_t handle,
unsigned long flags)
Commit a new distances structure.
This is similar to hwloc_distances_add_commit() but this variant is designed for backend inserting distances during
topology discovery.

23.56.3.2 hwloc_backend_distances_add_create()

hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (
hwloc_topology_t topology,
const char * name,
unsigned long kind,
unsigned long flags)
Create a new empty distances structure.
This is identical to hwloc_distances_add_create() but this variant is designed for backend inserting distances during
topology discovery.

23.56.3.3 hwloc_backend_distances_add_values()

int hwloc_backend_distances_add_values (

hwloc_topology_t topology,

hwloc_backend_distances_add_handle_t handle,

unsigned nbobjs,

hwloc_obj_t * objs,

hwloc_uint64_t *x values,

unsigned long flags)
Specify the objects and values in a new empty distances structure.
This is similar to hwloc_distances_add_values() but this variant is designed for backend inserting distances during
topology discovery.
The only semantical difference is that objs and values are not duplicated, but directly attached to the topology.
On success, these arrays are given to the core and should not ever be freed by the caller anymore.

Generated by Doxygen

220 Topic Documentation

Generated by Doxygen

Chapter 24

Data Structure Documentation

24.1 hwloc_backend Struct Reference

#include <plugins.h>

Data Fields

* unsigned phases

+ unsigned long flags

* intis_thissystem

* void * private_data

« void(x disable)(struct hwloc_backend xbackend)

« int(x discover)(struct hwloc_backend xbackend, struct hwloc_disc_status *status)

» int(x get_pci_busid_cpuset)(struct hwloc_backend =xbackend, struct hwloc_pcidev_atir s xbusid,
hwloc_bitmap_t cpuset)

24.1.1 Detailed Description

Discovery backend structure.

A backend is the instantiation of a discovery component. When a component gets enabled for a topology, its
instantiate() callback creates a backend.

hwloc_backend_alloc() initializes all fields to default values that the component may change (except "component”
and "next") before enabling the backend with hwloc_backend_enable().

Most backends assume that the topology is_thissystem flag is set because they talk to the underlying operating
system. However they may still be used in topologies without the is_thissystem flag for debugging reasons. In
practice, they are usually auto-disabled in such cases (excluded by xml or synthetic backends, or by environment
variables when changing the Linux fsroot or the x86 cpuid path).

24.1.2 Field Documentation

24.1.21 disable

void (*x hwloc_backend: :disable) (struct hwloc_backend xbackend)
Callback for freeing the private_data. May be NULL.

24.1.2.2 discover

int (x hwloc_backend: :discover) (struct hwloc_backend xbackend, struct hwloc_disc_status *xstatus)
Main discovery callback. returns -1 on error, either because it couldn't add its objects ot the existing topology, or
because of an actual discovery/gathering failure. May be NULL.

24.1.2.3 flags

unsigned long hwloc_backend::flags
Backend flags, currently always 0.

Generated by Doxygen

222 Data Structure Documentation

24.1.2.4 get_pci_busid_cpuset

int (¥ hwloc_backend::get_pci_busid_cpuset) (struct hwloc_backend #*backend, struct hwloc_<+
pcidev_attr_s xbusid, hwloc_bitmap_t cpuset)

Callback to retrieve the locality of a PCI object. Called by the PCI core when attaching PCI hierarchy to CPU objects.
May be NULL.

24.1.2.5 is_thissystem

int hwloc_backend::is_thissystem

Backend-specific 'is_thissystem' property. Set to 0 if the backend disables the thissystem flag for this topology (e.g.
loading from xml or synthetic string, or using a different fsroot on Linux, or a x86 CPUID dump). Set to -1 if the
backend doesn't care (default).

24.1.2.6 phases

unsigned hwloc_backend: :phases
Discovery phases performed by this component, possibly without some of them if excluded by other components.
OR'ed set of hwloc_disc_phase_t.

24.1.2.7 private_data

void* hwloc_backend::private_data
Backend private data, or NULL if none.
The documentation for this struct was generated from the following file:

* plugins.h

24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* union {
struct hwloc_pcidev_attr_s pci
} upstream

» hwloc_obj_bridge_type_t upstream_type
* union {
struct {
unsigned short domain
unsigned char secondary_bus
unsigned char subordinate_bus

} pei
} downstream

» hwloc_obj_bridge_type_t downstream_type
* unsigned depth

24.2.1 Detailed Description
Bridge specific Object Attributes.

24.2.2 Field Documentation
24.2.2.1 depth

unsigned hwloc_obj_attr_u::hwloc_bridge_attr_s::depth

Generated by Doxygen

24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

223

24.2.2.2 domain

unsigned short hwloc_obj_attr_u::hwloc_bridge_attr_s::domain
Domain number the downstream PCI buses. Only 16bits PCl domains are supported by default.

24.2.2.3 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream

24.2.2.4 downstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream_type
Downstream Bridge type.

24.2.2.5 pci[1/2]

struct hwloc_pcidev_attr_s hwloc_obj_attr_u::hwloc_bridge_attr_s::pci
PCI attribute of the upstream part as a PCI device.

24.2.2.6 [struct] [2/2]

struct { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::pci

24.2.2.7 secondary_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::secondary_bus
First PCI bus number below the bridge.

24.2.2.8 subordinate_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus
Highest PCI bus number below the bridge.

24.2.2.9 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream

24.2.2.10 upstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream_type
Upstream Bridge type.
The documentation for this struct was generated from the following file:

* hwloc.h

24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* hwloc_uint64 t size

* unsigned depth

* unsigned linesize

* int associativity

» hwloc_obj_cache_type_t type

24.3.1 Detailed Description

Cache-specific Object Attributes.

Generated by Doxygen

224 Data Structure Documentation

24.3.2 Field Documentation
24.3.2.1 associativity

int hwloc_obj_attr_u::hwloc_cache_attr_s::associativity
Ways of associativity, -1 if fully associative, 0 if unknown.

24.3.2.2 depth

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::depth
Depth of cache (e.g., L1, L2, ...etc.)

24.3.2.3 linesize

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::linesize
Cache-line size in bytes. 0 if unknown.

24.3.2.4 size

hwloc_uint64_t hwloc_obj_attr_u::hwloc_cache_attr_s::size
Size of cache in bytes.

24.3.2.5 type

hwloc_obj_cache_type_t hwloc_obj_attr_u::hwloc_cache_attr_s::type
Cache type.
The documentation for this struct was generated from the following file:

* hwloc.h

24.4 hwloc_cl_device pci_bus_info_khr Struct Reference

#include <opencl.h>

Data Fields

* cl_uint pci_domain
* cl_uint pci_bus

* cl_uint pci_device
* cl_uint pci_function

24.4.1 Field Documentation
24411 pci_bus

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_bus

24.4.1.2 pci_device

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_device

24.41.3 pci_domain

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_domain

24.41.4 pci_function

cl_uint hwloc_cl _device_pci_bus_info_khr::pci_function
The documentation for this struct was generated from the following file:

» opencl.h

Generated by Doxygen

24.5 hwloc_cl_device_topology_amd Union Reference 225

24.5 hwloc_cl_device topology amd Union Reference

#include <opencl.h>

Data Fields

* struct {
cl_uint type
cl_uint data [5]
} raw

* struct {
cl_uint type
cl_char unused [17]
cl_char bus
cl_char device
cl_char function

} pcie

24.5.1 Field Documentation
24.5.1.1 bus

cl_char hwloc_cl_device_topology_amd: :bus

24.5.1.2 data

cl_uint hwloc_cl_device_topology_amd::datal[5]

24.5.1.3 device

cl_char hwloc_cl_device_topology_amd: :device

24.5.1.4 function

cl_char hwloc_cl_device_topology_amd::function

24.5.1.5 [struct]

struct { ... } hwloc_cl_device_topology_amd: :pcie

24.5.1.6 [struct]

struct { ... } hwloc_cl_device_topology_amd: :raw

245.1.7 type

cl_uint hwloc_cl_device_topology_amd: :type

24.5.1.8 unused

cl_char hwloc_cl_device_topology_amd: :unused[17]
The documentation for this union was generated from the following file:

» opencl.h

24.6 hwloc_component Struct Reference

#include <plugins.h>

Generated by Doxygen

226 Data Structure Documentation

Data Fields

 unsigned abi

* int(x init)(unsigned long flags)

« void(x finalize)(unsigned long flags)
» hwloc_component_type_t type

* unsigned long flags

 void x data

24.6.1 Detailed Description

Generic component structure.
Generic components structure, either statically listed by configure in static-components.h or dynamically loaded as
a plugin.

24.6.2 Field Documentation
24.6.2.1 abi

unsigned hwloc_component::abi

Component ABI version, set to HWLOC_COMPONENT_ABI.

24.6.2.2 data

void* hwloc_component::data
Component data, pointing to a struct hwloc_disc_component or struct hwloc_xml_component.

24.6.2.3 finalize

void (x hwloc_component::finalize) (unsigned long flags)

Process-wide component termination callback.

This optional callback is called after unregistering the component from the hwloc core (before unloading the plugin).
flags is always O for now.

Note

If the component uses Itdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

24.6.2.4 flags

unsigned long hwloc_component::flags
Component flags, unused for now.

24.6.2.5 init

int (¥ hwloc_component::init) (unsigned long flags)

Process-wide component initialization callback.

This optional callback is called when the component is registered to the hwloc core (after loading the plugin).
When the component is built as a plugin, this callback should call hwloc_check_plugin_namespace() and return an
negative error code on error.

flags is always 0 for now.

Returns

0 on success, or a negative code on error.

Note

If the component uses Itdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

Generated by Doxygen

24.7 hwloc_disc_component Struct Reference 227

24.6.2.6 type

hwloc_component_type_t hwloc_component::type
Component type.
The documentation for this struct was generated from the following file:

* plugins.h

24.7 hwloc_disc_component Struct Reference

#include <plugins.h>

Data Fields

» const char x name

* unsigned phases

* unsigned excluded_phases

« struct hwloc_backend x*(x instantiate)(struct hwloc_topology xtopology, struct hwloc_disc_component
xcomponent, unsigned excluded_phases, const void xdatal, const void xdata2, const void xdata3)

* unsigned priority

+ unsigned enabled_by default

24.7.1 Detailed Description

Discovery component structure.
This is the major kind of components, taking care of the discovery. They are registered by generic components,
either statically-built or as plugins.

24.7.2 Field Documentation
24.7.2.1 enabled_by_default

unsigned hwloc_disc_component::enabled_by_default
Enabled by default. If unset, if will be disabled unless explicitly requested.

24.7.2.2 excluded_phases

unsigned hwloc_disc_component: :excluded_phases

Component phases to exclude, as an OR'ed set of hwloc_disc_phase_t.

For a GLOBAL component, this usually includes all other phases (~UL).

Other components only exclude types that may bring conflicting topology information. MISC components should
likely not be excluded since they usually bring non-primary additional information.

24.7.2.3 instantiate

struct hwloc_backend * (¥ hwloc_disc_component::instantiate) (struct hwloc_topology *topology,
struct hwloc_disc_component *component, unsigned excluded_phases, const void *datal, const void
xdata2, const void xdata3l)

Instantiate callback to create a backend from the component. Parameters datal, data2, data3 are NULL except for
components that have special enabling routines such as hwloc_topology_set_xml().

24.7.2.4 name

const char*x hwloc_disc_component: :name
Name. If this component is built as a plugin, this name does not have to match the plugin filename.

24.7.2.5 phases

unsigned hwloc_disc_component: :phases
Discovery phases performed by this component. OR'ed set of hwloc_disc_phase_t.

Generated by Doxygen

228 Data Structure Documentation

24.7.2.6 priority

unsigned hwloc_disc_component: :priority

Component priority. Used to sort topology->components, higher priority first. Also used to decide between two
components with the same name.

Usual values are 50 for native OS (or platform) components, 45 for x86, 40 for no-OS fallback, 30 for global compo-
nents (xml, synthetic), 20 for pci, 10 for other misc components (opencl etc.).

The documentation for this struct was generated from the following file:

* plugins.h

24.8 hwloc_disc_status Struct Reference

#include <plugins.h>

Data Fields

» hwloc_disc_phase_t phase
+ unsigned excluded_phases
+ unsigned long flags

24.8.1 Detailed Description

Discovery status structure.
Used by the core and backends to inform about what has been/is being done during the discovery process.

24.8.2 Field Documentation

24.8.2.1 excluded_phases

unsigned hwloc_disc_status::excluded_phases

Dynamically excluded phases. If a component decides during discovery that some phases are no longer needed.
24.8.2.2 flags

unsigned long hwloc_disc_status::flags

OR'ed set of hwloc_disc_status_flag_e.

24.8.2.3 phase

hwloc_disc_phase_t hwloc_disc_status: :phase
The current discovery phase that is performed. Must match one of the phases in the component phases field.
The documentation for this struct was generated from the following file:

* plugins.h

24.9 hwloc_distances_s Struct Reference

#include <distances.h>

Data Fields

 unsigned nbobjs

* hwloc_obj_t * objs

+ unsigned long kind

* hwloc_uint64_t x values

Generated by Doxygen

24.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference 229

24.9.1 Detailed Description

Matrix of distances between a set of objects.

The most common matrix contains latencies between NUMA nodes (as reported in the System Locality Distance
Information Table (SLIT) in the ACPI specification), which may or may not be physically accurate. It corresponds
to the latency for accessing the memory of one node from a core in another node. The corresponding kind is
HWLOC_DISTANCES_KIND_MEANS_LATENCY | HWLOC_DISTANCES_KIND_FROM_USER. The name of this
distances structure is "NUMALatency".

The matrix may also contain bandwidths between random sets of objects, possibly provided by the user, as specified
in the kind attribute. Others common distance structures include and "XGMIBandwidth", "XGMIHops", "XeLink«
Bandwidth" and "NVLinkBandwidth".

Pointers ob js and values should not be replaced, reallocated, freed, etc. However callers are allowed to modify
kind as well as the contents of objs and values arrays. For instance, if there is a single NUMA node per
Package, hwloc_get_obj_with_same_locality() may be used to convert between them and replace NUMA nodes
in the objs array with the corresponding Packages. See also hwloc_distances_transform() for applying some
transformations to the structure.

24.9.2 Field Documentation

24.9.2.1 kind

unsigned long hwloc_distances_s::kind

OR'ed set of hwloc_distances_kind_e.

24.9.2.2 nbobjs

unsigned hwloc_distances_s::nbobjs

Number of objects described by the distance matrix.
24.9.2.3 objs

hwloc_obj_t* hwloc_distances_s::0bjs

Array of objects described by the distance matrix. These objects are not in any particular order, see
hwloc_distances_obj_index() and hwloc_distances_obj_pair_values() for easy ways to find objects in this array
and their corresponding values.

24.9.2.4 values

hwloc_uint64_t* hwloc_distances_s::values

Matrix of distances between objects, stored as a one-dimension array.

Distance from i-th to j-th object is stored in slot ixnbobjs+j. The meaning of the value depends on the kind attribute.
The documentation for this struct was generated from the following file:

« distances.h

24.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* unsigned depth

* unsigned kind

* unsigned subkind

+ unsigned char dont_merge

24.10.1 Detailed Description

Group-specific Object Attributes.

Generated by Doxygen

230 Data Structure Documentation

24.10.2 Field Documentation
24.10.2.1 depth

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::depth
Depth of group object. It may change if intermediate Group objects are added.

24.10.2.2 dont_merge

unsigned char hwloc_obj_attr_u::hwloc_group_attr_s::dont_merge
Flag preventing groups from being automatically merged with identical parent or children.

24.10.2.3 kind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::kind
Internally-used kind of group.

24.10.2.4 subkind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::subkind
Internally-used subkind to distinguish different levels of groups with same kind.
The documentation for this struct was generated from the following file:

* hwloc.h

24.11 hwloc_info_s Struct Reference

#include <hwloc.h>

Data Fields

» char x name
» char x value

24.11.1 Detailed Description
Object info attribute (name and value strings)
See also

Consulting and Adding Info Attributes

24.11.2 Field Documentation
24.11.2.1 name

char*x hwloc_info_s::name
Info name.

24.11.2.2 value

charx hwloc_info_s::value
Info value.
The documentation for this struct was generated from the following file:

* hwloc.h

24.12 hwloc_location Struct Reference

#include <memattrs.h>

Generated by Doxygen

24.13 hwloc_location::hwloc_location_u Union Reference

231

Data Structures

« union hwloc_location_u

Data Fields

» enum hwloc_location_type_e type
* union hwloc_location::hwloc_location_u location

24.12.1 Detailed Description

Where to measure attributes from.

24.12.2 Field Documentation

24.12.2.1 location

union hwloc_location::hwloc_location_u hwloc_location::location

24.12.2.2 type

enum hwloc_location_type_e hwloc_location::type
Type of location.

The documentation for this struct was generated from the following file:

* memattrs.h

24.13 hwloc_location::hwloc location _u Union Reference

#include <memattrs.h>

Data Fields

* hwloc_cpuset_t cpuset
» hwloc_obj_t object

24.13.1 Detailed Description

Actual location.

24.13.2 Field Documentation
24.13.2.1 cpuset

hwloc_cpuset_t hwloc_location::hwloc_location_u::cpuset

Location as a cpuset, when the location type is HWLOC_LOCATION_TYPE_CPUSET.

24.13.2.2 object

hwloc_obj_t hwloc_location::hwloc_location_u::object

Location as an object, when the location type is HWLOC_LOCATION_TYPE_OBJECT.
The documentation for this union was generated from the following file:

* memattrs.h

24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_--

page_type_s Struct Reference

#include <hwloc.h>

Generated by Doxygen

232 Data Structure Documentation

Data Fields

* hwloc_uint64_t size
* hwloc_uint64_t count

24.141 Detailed Description

Array of local memory page types, NULL if no local memory and page_types is 0.
The array is sorted by increasing size fields. It contains page_types_len slots.
24.14.2 Field Documentation

24.14.2.1 count

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::count
Number of pages of this size.

24.14.2.2 size

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::size
Size of pages.
The documentation for this struct was generated from the following file:

* hwloc.h

24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference

#include <hwloc.h>

Data Structures

« struct hwloc_memory_page_type_s

Data Fields

» hwloc_uint64_t local_memory
* unsigned page_types_len
« struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s * page_types

24.15.1 Detailed Description
NUMA node-specific Object Attributes.

24.15.2 Field Documentation

24.15.2.1 local_memory

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::local_memory
Local memory (in bytes)

24.15.2.2 page_types

struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s * hwloc_obj_attr_u«

:thwloc_numanode_attr_s::page_types

Generated by Doxygen

24.16 hwloc_obj Struct Reference 233

24.15.2.3 page_types_len

unsigned hwloc_obj_attr_u::hwloc_numanode_attr_s::page_types_len
Size of array page_types.
The documentation for this struct was generated from the following file:

* hwloc.h

24.16 hwloc_obj Struct Reference

#include <hwloc.h>

Data Fields

» hwloc_obj_type_t type

* char * subtype

* unsigned os_index

 char * name

* hwloc_uint64_t total_memory
+ union hwloc_obj_attr_u x attr

* int depth

 unsigned logical_index

« struct hwloc_obj x next_cousin
« struct hwloc_obj * prev_cousin
« struct hwloc_obj * parent

* unsigned sibling_rank

« struct hwloc_obj * next_sibling
« struct hwloc_obj * prev_sibling
* int symmetric_subtree

» hwloc_cpuset_t cpuset

» hwloc_cpuset_t complete_cpuset
* hwloc_nodeset_t nodeset

» hwloc_nodeset_t complete_nodeset
« struct hwloc_info_s x infos
 unsigned infos_count

 void * userdata

* hwloc_uint64_t gp_index

List and array of normal children below this object (except Memory, I/0 and Misc children).
* unsigned arity
+ struct hwloc_obj *x children
« struct hwloc_obj * first_child
« struct hwloc_obj * last_child

List of Memory children below this object.

* unsigned memory_arity
« struct hwloc_obj « memory_first_child

List of 1/0 children below this object.

* unsigned io_arity
« struct hwloc_obj * io_first_child

List of Misc children below this object.

* unsigned misc_arity
» struct hwloc_obj * misc_first_child

Generated by Doxygen

234 Data Structure Documentation

24.16.1 Detailed Description

Structure of a topology object.
Applications must not modify any field except hwloc_obj.userdata.

24.16.2 Field Documentation
24.16.2.1 arity

unsigned hwloc_obj::arity
Number of normal children. Memory, Misc and /O children are not listed here but rather in their dedicated children
list.

24.16.2.2 attr

union hwloc_obj_attr_ux hwloc_obj::attr
Object type-specific Attributes, may be NULL if no attribute value was found.

24.16.2.3 children

struct hwloc_obj** hwloc_obj::children
Normal children, children[0 .. arity -1].

24.16.2.4 complete_cpuset

hwloc_cpuset_t hwloc_obj::complete_cpuset

The complete CPU set of processors of this object,.

This may include not only the same as the cpuset field, but also some CPUs for which topology in-
formation is unknown or incomplete, some offlines CPUs, and the CPUs that are ignored when the
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED flag is not set. Thus no corresponding PU object may be
found in the topology, because the precise position is undefined. It is however known that it would be somewhere
under this object.

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.5 complete_nodeset

hwloc_nodeset_t hwloc_obj::complete_nodeset

The complete NUMA node set of this object,.

This may include not only the same as the nodeset field, but also some NUMA nodes for which topol-
ogy information is unknown or incomplete, some offlines nodes, and the nodes that are ignored when the
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED flag is not set. Thus no corresponding NUMA node object
may be found in the topology, because the precise position is undefined. It is however known that it would be
somewhere under this object.

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit is set in
complete_nodeset.

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.6 cpuset

hwloc_cpuset_t hwloc_obj::cpuset

CPUs covered by this object.

This is the set of CPUs for which there are PU objects in the topology under this object, i.e. which are known to be
physically contained in this object and known how (the children path between this object and the PU objects).

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these CPUs may
be online but not allowed for binding, see hwloc_topology_get_allowed_cpuset().

Generated by Doxygen

24.16 hwloc_obj Struct Reference 235

Note

All objects have non-NULL CPU and node sets except Misc and /O objects.
Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.7 depth

int hwloc_obj::depth

Vertical index in the hierarchy.

For normal objects, this is the depth of the horizontal level that contains this object and its cousins of the same type.
If the topology is symmetric, this is equal to the parent depth plus one, and also equal to the number of parent/child
links from the root object to here.

For special objects (NUMA nodes, I/O and Misc) that are not in the main tree, this is a special negative value that
corresponds to their dedicated level, see hwloc_get_type_depth() and hwloc_get_type_depth_e. Those special
values can be passed to hwloc functions such hwloc_get _nbobjs_by_depth() as usual.

24.16.2.8 first_child
struct hwloc_obj* hwloc_obj::first_child
First normal child.

24.16.2.9 gp_index

hwloc_uint64_t hwloc_obj::gp_index

Global persistent index. Generated by hwloc, unique across the topology (contrary to os_index) and persistent
across topology changes (contrary to logical_index). Mostly used internally, but could also be used by application
to identify objects.

24.16.2.10 infos

struct hwloc_info_s* hwloc_obj::infos

Array of info attributes (name and value strings).

24.16.2.11 infos_count

unsigned hwloc_obj::infos_count

Size of infos array.

24.16.2.12 io_arity

unsigned hwloc_obj::io_arity

Number of 1/O children. These children are listed in io_first_child.

24.16.2.13 io_first_child

struct hwloc_obj* hwloc_obj::io_first_child
First 1/0O child. Bridges, PCl and OS devices are listed here (1o_arity and io_first_child) instead of in
the normal children list. See also hwloc_obj_type_is_io().

24.16.2.14 last_child
struct hwloc_obJj* hwloc_obj::last_child
Last normal child.

24.16.2.15 logical_index

unsigned hwloc_obj::logical_index

Horizontal index in the whole list of similar objects, hence guaranteed unique across the entire machine. Could be a
"cousin_rank" since it's the rank within the "cousin" list below Note that this index may change when restricting the
topology or when inserting a group.

Generated by Doxygen

236 Data Structure Documentation

24.16.2.16 memory_arity

unsigned hwloc_obj::memory_arity
Number of Memory children. These children are listed in memory_first_child.

24.16.2.17 memory_first_child

struct hwloc_obj* hwloc_obj::memory_first_child

First Memory child. NUMA nodes and Memory-side caches are listed here (memory_arity and memory_<«
first_child) instead of in the normal children list. See also hwloc_obj_type_is_memory().

A memory hierarchy starts from a normal CPU-side object (e.g. Package) and ends with NUMA nodes as leaves.
There might exist some memory-side caches between them in the middle of the memory subtree.

24.16.2.18 misc_arity

unsigned hwloc_obj::misc_arity

Number of Misc children. These children are listed inmisc_first_child.

24.16.2.19 misc_first_child

struct hwloc_obj* hwloc_obj::misc_first_child
First Misc child. Misc objects are listed here (misc_arity andmisc_first_child) instead of in the normal
children list.

24.16.2.20 name

char*x hwloc_ob7j::name
Object-specific name if any. Mostly used for identifying OS devices and Misc objects where a name string is more
useful than numerical indexes.

24.16.2.21 next_cousin

struct hwloc_obj* hwloc_obj::next_cousin

Next object of same type and depth.

24.16.2.22 next_sibling

struct hwloc_obj* hwloc_obj::next_sibling
Next object below the same parent (inside the same list of children).

24.16.2.23 nodeset

hwloc_nodeset_t hwloc_obj::nodeset

NUMA nodes covered by this object or containing this object.

This is the set of NUMA nodes for which there are NUMA node objects in the topology under or above this object,
i.e. which are known to be physically contained in this object or containing it and known how (the children path
between this object and the NUMA node objects).

In the end, these nodes are those that are close to the current object. Function hwloc_get_local_numanode_objs()
may be used to list those NUMA nodes more precisely.

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these nodes may
be online but not allowed for allocation, see hwloc_topology_get_allowed_nodeset().

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit may be set in
nodeset.

Note

All objects have non-NULL CPU and node sets except Misc and /O objects.

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

Generated by Doxygen

24.16 hwloc_obj Struct Reference 237

24.16.2.24 os_index

unsigned hwloc_obj::os_index

OS-provided physical index number. It is not guaranteed unique across the entire machine, except for PUs and
NUMA nodes. Set to HWLOC_UNKNOWN_INDEX if unknown or irrelevant for this object.
24.16.2.25 parent

struct hwloc_obj* hwloc_obj::parent

Parent, NULL if root (Machine object)

24.16.2.26 prev_cousin

struct hwloc_obj* hwloc_obj::prev_cousin

Previous object of same type and depth.

24.16.2.27 prev_sibling

struct hwloc_obj* hwloc_obj::prev_sibling

Previous object below the same parent (inside the same list of children).

24.16.2.28 sibling_rank

unsigned hwloc_obj::sibling_rank

Index in parent's children[] array. Or the index in parent's Memory, I/O or Misc children list.
24.16.2.29 subtype

charx hwloc_obj::subtype

Subtype string to better describe the type field.

24.16.2.30 symmetric_subtree

int hwloc_obj::symmetric_subtree

Set if the subtree of normal objects below this object is symmetric, which means all normal children and their
children have identical subtrees.

Memory, I/O and Misc children are ignored.

If set in the topology root object, Istopo may export the topology as a synthetic string.

24.16.2.31 total_memory

hwloc_uint64_t hwloc_obj::total_memory

Total memory (in bytes) in NUMA nodes below this object.
24.16.2.32 type

hwloc_obj_type_t hwloc_obj::type

Type of object.

24.16.2.33 userdata

void* hwloc_obj::userdata

Application-given private data pointer, initialized to NULL, use it as you wish. See hwloc_topology_set_userdata_export_callback()
in hwloc/export.h if you wish to export this field to XML.

The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

238

Data Structure Documentation

24.17 hwloc_obj_attr_u Union Reference

#include <hwloc.h>

Data Structures

struct hwloc_bridge_attr_s
struct hwloc_cache_attr_s
struct hwloc_group_attr_s
struct hwloc_numanode_attr_s
struct hwloc_osdev_attr_s
struct hwloc_pcidev_attr_s

Data Fields

struct hwloc_obj_attr_u::hwloc_numanode_attr_s numanode
struct hwloc_obj_attr_u::hwloc_cache_attr_s cache

struct hwloc_obj_attr_u::hwloc_group_attr_s group

struct hwloc_obj_attr_u::hwloc_pcidev_attr_s pcidev

struct hwloc_obj_attr_u::hwloc_bridge_attr_s bridge

struct hwloc_obj_attr_u::hwloc_osdev_attr_s osdev

24.17.1 Detailed Description

Object type-specific Attributes.

24.17.2 Field Documentation

24.17.2.1 bridge

struct hwloc_obj_attr_u::hwloc_bridge_attr_s hwloc_obj_attr_u::bridge

24.17.2.2 cache

struct hwloc_obj_attr_u::hwloc_cache_attr_s hwloc_obj_attr_u::cache

24.17.2.3 group

struct hwloc_obj_attr_u::hwloc_group_attr_s hwloc_obj_attr_u::group

24.17.2.4 numanode

struct hwloc_obj_attr_u::hwloc_numanode_attr_s hwloc_obj_attr_u::numanode

24.17.2.5 osdev

struct hwloc_obj_attr_u::hwloc_osdev_attr_s hwloc_obj_attr_u::osdev

24.17.2.6 pcidev

struct hwloc_obj_attr_u::hwloc_pcidev_attr_s hwloc_obj_attr_u::pcidev
The documentation for this union was generated from the following file:

* hwloc.h

24.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference

#include <hwloc.h>

Generated by Doxygen

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 239

Data Fields

* hwloc_obj_osdev_type_t type

24.18.1 Detailed Description
OS Device specific Object Attributes.

24.18.2 Field Documentation
24.18.2.1 type

hwloc_obj_osdev_type_t hwloc_obj_attr_u::hwloc_osdev_attr_s::type
The documentation for this struct was generated from the following file:

* hwloc.h

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* unsigned short domain

* unsigned char bus

* unsigned char dev

* unsigned char func

* unsigned short class_id

* unsigned short vendor_id

+ unsigned short device_id

* unsigned short subvendor_id
* unsigned short subdevice_id
* unsigned char revision

« float linkspeed

24.19.1 Detailed Description

PCI Device specific Object Attributes.

24.19.2 Field Documentation

24.19.2.1 bus

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::bus
Bus number (yy in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.2 class_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::class_id
The class number (first two bytes, without the prog_if).

24.19.2.3 dev

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::dev
Device number (zz in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.4 device_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::device_id

Device ID (yyyy in [xxxx:yyyy]).

Generated by Doxygen

240 Data Structure Documentation

24.19.2.5 domain

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::domain
Domain number (xxxx in the PCI BDF notation xxxx:yy:zz.t). Only 16bits PCl domains are supported by default.

24.19.2.6 func

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::func
Function number (t in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.7 linkspeed

float hwloc_obj_attr_u::hwloc_pcidev_attr_s::linkspeed

Link speed in GB/s. This datarate is the currently configured speed of the entire PCI link (sum of the bandwidth of
all PCl lanes in that link). It may change during execution since some devices are able to slow their PCI links down
when idle.

24.19.2.8 revision

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::revision
Revision number.

24.19.2.9 subdevice_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subdevice_id

Sub-Device ID.

24.19.2.10 subvendor_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subvendor_id

Sub-Vendor ID.

24.19.2.11 vendor_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::vendor_id
Vendor ID (xxxx in [xxxx:yyyy]).
The documentation for this struct was generated from the following file:

* hwloc.h

24.20 hwloc_topology_cpubind_support Struct Reference

#include <hwloc.h>

Data Fields

+ unsigned char set_thisproc_cpubind
 unsigned char get_thisproc_cpubind
 unsigned char set_proc_cpubind

 unsigned char get_proc_cpubind

 unsigned char set_thisthread_cpubind
 unsigned char get_thisthread_cpubind

* unsigned char set_thread_cpubind

* unsigned char get_thread_cpubind

* unsigned char get_thisproc_last_cpu_location
* unsigned char get_proc_last_cpu_location

« unsigned char get_thisthread_last_cpu_location

Generated by Doxygen

24.20 hwloc_topology_cpubind_support Struct Reference 241

24.20.1 Detailed Description

Flags describing actual PU binding support for this topology.

A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous
objects).

24.20.2 Field Documentation

24.20.2.1 get_proc_cpubind

unsigned char hwloc_topology_cpubind_ support::get_proc_cpubind

Getting the binding of a whole given process is supported.

24.20.2.2 get_proc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_proc_last_cpu_location
Getting the last processors where a whole process ran is supported

24.20.2.3 get_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisproc_cpubind
Getting the binding of the whole current process is supported.

24.20.2.4 get_thisproc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisproc_last_cpu_location
Getting the last processors where the whole current process ran is supported
24.20.2.5 get_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisthread_cpubind
Getting the binding of the current thread only is supported.

24.20.2.6 get_thisthread_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisthread_last_cpu_location
Getting the last processors where the current thread ran is supported

24.20.2.7 get_thread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thread_cpubind

Getting the binding of a given thread only is supported.

24.20.2.8 set_proc_cpubind

unsigned char hwloc_topology_cpubind_support::set_proc_cpubind

Binding a whole given process is supported.

24.20.2.9 set_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisproc_cpubind
Binding the whole current process is supported.

24.20.2.10 set_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisthread_cpubind
Binding the current thread only is supported.

Generated by Doxygen

242 Data Structure Documentation

24.20.2.11 set_thread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thread_cpubind
Binding a given thread only is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

24.21 hwloc_topology_diff _u::hwloc_topology diff _generic_s Struct
Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_type_t type

+ union hwloc_topology_diff_u * next
24.21.1 Field Documentation
24.21.1.1 next

union hwloc_topology_diff ux hwloc_topology_diff_ u::hwloc_topology_diff_ generic_s::next

24.21.1.2 type

hwloc_topology_diff type_t hwloc_topology_diff_u::hwloc_topology_diff_generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.22 hwloc_topology_diff_obj_attr_u::hwloc_topology diff _obj_attr -
generic_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type

24.22.1 Field Documentation
24.22.1.1 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_ <«
attr_generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.23 hwloc_topology_diff _u::hwloc_topology_ diff_obj_attr_s Struct
Reference

#include <diff.h>

Generated by Doxygen

24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference

243

Data Fields

» hwloc_topology_diff_type_t type

« union hwloc_topology_diff_u * next

* int obj_depth

* unsigned obj_index

« union hwloc_topology_diff_obj_attr_u diff

24.23.1 Field Documentation
24.23.1.1 diff

union hwloc_topology_diff obj_attr_u hwloc_topology_diff_ u::hwloc_topology_diff_ obj_attr_s<«

r:diff

24.23.1.2 next

union hwloc_topology_diff ux hwloc_topology_diff_ u::hwloc_topology_diff_obj_attr_s::next

24.23.1.3 obj_depth

int hwloc_topology_diff u::hwloc_topology_diff_ obj_attr_s::obj_depth

24.23.1.4 obj_index

unsigned hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::obj_index

24.23.1.5 type

hwloc_topology_diff_ type_t hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.24 hwloc_topology_diff _obj_atir_u::hwloc_topology diff obj_attr .

string_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
« char x name

 char % oldvalue

 char x newvalue

24.24.1 Detailed Description

String attribute modification with an optional name.

24.24.2 Field Documentation

24.24.2.1 name

char*x hwloc_topology_diff obj_attr_u::hwloc_topology_diff obj_attr_string_s::name

24.24.2.2 newvalue

charx hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s:

:newvalue

Generated by Doxygen

244 Data Structure Documentation

24.24.2.3 oldvalue

char*x hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_string_s::oldvalue

24.24.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_ diff obj_attr_u::hwloc_topology_diff_ obj_ <«
attr_string_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.25 hwloc_topology_diff obj_attr_u Union Reference

#include <diff.h>

Data Structures
« struct hwloc_topology_diff_obj_attr_generic_s
« struct hwloc_topology_diff_obj_attr_string_s
« struct hwloc_topology_diff_obj_attr_uint64_s
Data Fields

« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s generic
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s uint64
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s string

24.25.1 Detailed Description

One object attribute difference.

24.25.2 Field Documentation
24.25.2.1 (generic

struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s hwloc_topology+

diff_obj_attr_u::generic

24.25.2.2 string

struct hwloc_topology_diff_ obj_attr_u::hwloc_topology_diff_ obj_attr_string_ s hwloc_topology_ <
diff_obj_attr_u::string

24.25.2.3 uint64

struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s hwloc_topology_ <«
diff_obj_attr_u::uinté4
The documentation for this union was generated from the following file:

« diff.h

24.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_ diff _obj_attr_.-
uint64_s Struct Reference

#include <diff.h>

Generated by Doxygen

24.27 hwloc_topology_diff_u::hwloc_topology_ diff too_complex_s Struct Reference

245

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
» hwloc_uint64_t index

* hwloc_uint64 _t oldvalue

* hwloc_uint64_t newvalue

24.26.1 Detailed Description

Integer attribute modification with an optional index.

24.26.2 Field Documentation
24.26.2.1 index

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_ diff obj_attr_uint64_s::index

24.26.2.2 newvalue

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_uint64_s::newvalue

24.26.2.3 oldvalue

hwloc_uint64_t hwloc_topology_diff obj_attr_u::hwloc_topology diff_ obj_attr_uinté64_s::oldvalue

24.26.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_ <«

attr_uint64_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.27 hwloc_topology_diff_u::hwloc_topology diff too_complex_s
Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff type_t type

+ union hwloc_topology_diff_u * next
* int obj_depth

» unsigned obj_index

24.27.1 Field Documentation
24.27.1.1 next

union hwloc_topology_diff ux hwloc_topology_diff_ u::hwloc_topology_diff_ too_complex_s::next

24.27.1.2 obj_depth

int hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_depth

24.27.1.3 obj_index

unsigned hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_index

Generated by Doxygen

246 Data Structure Documentation

24.27.1.4 type

hwloc_topology_diff_ type_t hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.28 hwloc_topology_diff u Union Reference

#include <diff.h>

Data Structures

« struct hwloc_topology_diff_generic_s
« struct hwloc_topology_diff_obj_attr_s
« struct hwloc_topology_diff_too_complex_s

Data Fields

« struct hwloc_topology_diff_u::hwloc_topology_diff_generic_s generic
« struct hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s obj_attr
« struct hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s too_complex

24.28.1 Detailed Description

One element of a difference list between two topologies.

24.28.2 Field Documentation
24.28.2.1 generic

struct hwloc_topology_diff u::hwloc_topology_diff generic_s hwloc_topology_diff u::generic

24.28.2.2 obj_attr

struct hwloc_topology_diff u::hwloc_topology_diff obj_attr_s hwloc_topology_diff u::obj_attr

24.28.2.3 too_complex

struct hwloc_topology_diff_u::hwloc_topology_diff_ too_complex_s hwloc_topology_diff_u::too_<«+
complex
The documentation for this union was generated from the following file:

« diff.h

24.29 hwloc_topology_discovery support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char pu

* unsigned char numa

* unsigned char numa_memory

* unsigned char disallowed_pu

+ unsigned char disallowed_numa
* unsigned char cpukind_efficiency

Generated by Doxygen

24.30 hwloc_topology _membind_support Struct Reference 247

24.29.1 Detailed Description

Flags describing actual discovery support for this topology.

24.29.2 Field Documentation
24.29.2.1 cpukind_efficiency

unsigned char hwloc_topology_discovery_support::cpukind_efficiency

Detecting the efficiency of CPU kinds is supported, see Kinds of CPU cores.

24.29.2.2 disallowed numa

unsigned char hwloc_topology_discovery_support::disallowed_numa
Detecting and identifying NUMA nodes that are not available to the current process is supported.

24.29.2.3 disallowed_pu

unsigned char hwloc_topology_discovery_support::disallowed_pu
Detecting and identifying PU objects that are not available to the current process is supported.

24.29.2.4 numa

unsigned char hwloc_topology_discovery_support::numa

Detecting the number of NUMA nodes is supported.

24.29.2.5 numa_memotry

unsigned char hwloc_topology_discovery_support::numa_memory
Detecting the amount of memory in NUMA nodes is supported.

24.29.2.6 pu

unsigned char hwloc_topology_discovery_support: :pu
Detecting the number of PU objects is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

24.30 hwloc_topology _membind_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char set_thisproc_membind

+ unsigned char get_thisproc_membind

* unsigned char set_proc_membind

+ unsigned char get_proc_membind

* unsigned char set_thisthread_membind
* unsigned char get_thisthread_membind
* unsigned char set_area_membind

* unsigned char get_area_membind

* unsigned char alloc_membind

* unsigned char firsttouch_membind

* unsigned char bind_membind

* unsigned char interleave_membind

* unsigned char nexttouch_membind

* unsigned char migrate_membind

Generated by Doxygen

248 Data Structure Documentation

« unsigned char get_area_memlocation
* unsigned char weighted_interleave_membind

24.30.1 Detailed Description

Flags describing actual memory binding support for this topology.

A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous
objects).

24.30.2 Field Documentation

24.30.2.1 alloc_membind

unsigned char hwloc_topology_membind_support::alloc_membind
Allocating a bound memory area is supported.

24.30.2.2 bind_membind

unsigned char hwloc_topology_membind_support::bind_membind

Bind policy is supported.

24.30.2.3 firsttouch_membind

unsigned char hwloc_topology_membind_support::firsttouch_membind
First-touch policy is supported.

24.30.2.4 get_area_membind

unsigned char hwloc_topology_membind_support::get_area_membind
Getting the binding of a given memory area is supported.

24.30.2.5 get_area_memlocation

unsigned char hwloc_topology_membind_support::get_area_memlocation
Getting the last NUMA nodes where a memory area was allocated is supported
24.30.2.6 get_proc_membind

unsigned char hwloc_topology_membind_support::get_proc_membind
Getting the binding of a whole given process is supported.

24.30.2.7 get_thisproc_membind

unsigned char hwloc_topology_membind_support::get_thisproc_membind
Getting the binding of the whole current process is supported.

24.30.2.8 get_thisthread_membind

unsigned char hwloc_topology_membind_support::get_thisthread_membind
Getting the binding of the current thread only is supported.

24.30.2.9 interleave_membind

unsigned char hwloc_topology_membind_support::interleave_membind
Interleave policy is supported.

24.30.2.10 migrate_membind

unsigned char hwloc_topology_membind_support::migrate_membind
Migration flags is supported.

Generated by Doxygen

24.31 hwloc_topology_misc_support Struct Reference 249

24.30.2.11 nexttouch_membind

unsigned char hwloc_topology_membind_support::nexttouch_membind
Next-touch migration policy is supported.

24.30.2.12 set_area_membind

unsigned char hwloc_topology_membind_support::set_area_membind
Binding a given memory area is supported.

24.30.2.13 set_proc_membind

unsigned char hwloc_topology_membind_ support::set_proc_membind
Binding a whole given process is supported.

24.30.2.14 set_thisproc_membind

unsigned char hwloc_topology_membind_support::set_thisproc_membind
Binding the whole current process is supported.

24.30.2.15 set_thisthread_membind

unsigned char hwloc_topology_membind_support::set_thisthread_membind
Binding the current thread only is supported.

24.30.2.16 weighted_interleave_membind

unsigned char hwloc_topology_membind_support::weighted_interleave_membind
Weighted interleave policy is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

24.31 hwloc_topology_misc_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char imported_support

24.31.1 Detailed Description

Flags describing miscellaneous features.

24.31.2 Field Documentation
24.31.2.1 imported_support

unsigned char hwloc_topology_misc_support::imported_support

Support was imported when importing another topology, see HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT.
The documentation for this struct was generated from the following file:

* hwloc.h

24.32 hwloc_topology_support Struct Reference

#include <hwloc.h>

Generated by Doxygen

250 Data Structure Documentation

Data Fields

« struct hwloc_topology_discovery_support * discovery
« struct hwloc_topology_cpubind_support * cpubind

« struct hwloc_topology_membind_support * membind
« struct hwloc_topology_misc_support * misc

24.32.1 Detailed Description

Set of flags describing actual support for this topology.
This is retrieved with hwloc_topology_get_support() and will be valid until the topology object is destroyed. Note:
the values are correct only after discovery.

24.32.2 Field Documentation
24.32.2.1 cpubind

struct hwloc_topology_cpubind_support* hwloc_topology_support: :cpubind

24.32.2.2 discovery

struct hwloc_topology_discovery_support* hwloc_topology_support::discovery

24.32.2.3 membind

struct hwloc_topology_membind_support* hwloc_topology_support: :membind

24.32.2.4 misc

struct hwloc_topology_misc_support* hwloc_topology_support::misc
The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

Index

abi
hwloc_component, 226

Add distances between objects, 172
hwloc_distances_add_commit, 173
hwloc_distances_add_create, 173
hwloc_distances_add_flag_e, 172

HWLOC_DISTANCES_ADD_FLAG_GROUP, 172

hwloc_get_local_numanode_objs, 178

HWLOC_ LOCAL NUMANODE FLAG_ALL, 177

hwloc_local_numanode_flag_e, 176

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT_LOCALITY,
177

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY,
176

HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATHRNLOC LOCAL NUMANODE FLAG SMALLER _LOCALITY,

172
hwloc_distances_add_handle t, 172
hwloc_distances_add_values, 173

alloc_membind
hwloc_topology_membind_support, 248
API version, 89
HWLOC_API_VERSION, 89
HWLOC_COMPONENT_ABI, 89
hwloc_get_api_version, 90
arity
hwloc_obj, 234
associativity
hwloc_obj_attr_u::hwloc_cache_attr_s, 224
attr
hwloc_obj, 234

bind_membind
hwloc_topology_membind_support, 248
bridge
hwloc_obj_attr_u, 238

bus
hwloc_cl_device_topology_amd, 225
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239
cache

hwloc_obj_attr_u, 238

Changing the Source of Topology Discovery, 116
HWLOC_TOPOLOGY_COMPONENTS_FLAG_ BLACKLI

117
hwloc_topology_components_flag_e, 117
hwloc_topology_set_components, 117
hwloc_topology_set_pid, 117
hwloc_topology_set_synthetic, 118
hwloc_topology_set_xml, 118
hwloc_topology_set_xmlbuffer, 119
children

hwloc_obj, 234
class_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239
Command-Line Tools, 19

Comparing memory node attributes for finding where to

allocate on, 175

177
HWLOC_LOCATION_TYPE_CPUSET, 177
hwloc_location_type_e, 177
HWLOC_LOCATION_TYPE_OBJECT, 177
hwloc_memattr_get_best_initiator, 179
hwloc_memattr_get_best_target, 179
hwloc_memattr_get_by_name, 180
hwloc_memattr_get_initiators, 180
hwloc_memattr_get_targets, 181
hwloc_memattr_get_value, 181
HWLOC_MEMATTR_ID_BANDWIDTH, 178
HWLOC_MEMATTR_ID_CAPACITY, 177
hwloc_memattr_id_e, 177
HWLOC_MEMATTR_ID_LATENCY, 178
HWLOC_MEMATTR_ID_LOCALITY, 177
HWLOC_MEMATTR_ID_READ_BANDWIDTH,

178
HWLOC_MEMATTR_ID_READ_LATENCY, 178
hwloc_memattr_id_t, 176
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH,

178
HWLOC_MEMATTR_ID_WRITE_LATENCY, 178
hwloc_topology_get_default_nodeset, 182

Compiling software on top of hwloc's C API, 13
complete_cpuset

hwloc_obj, 234
mplete _nodeset
wloc_obj, 234

Components and plugins, 59
Components and Plugins: Core functions to be used by

components, 213
hwloc__insert_object_by cpuset, 214
hwloc_alloc_setup_object, 214
hwloc_hide_errors, 214
hwloc_insert_object_by_parent, 215
hwloc_obj_add_children_sets, 215
HWLOC_SHOW_ALL_ERRORS, 214
HWLOC_SHOW_CRITICAL_ERRORS, 214
hwloc_topology_reconnect, 215

Components and Plugins: Discovery components and

backends, 211

Generated by Doxygen

252

INDEX

hwloc_backend_alloc, 212
hwloc_backend_enable, 212
HWLOC_DISC_PHASE_ANNOTATE, 211
HWLOC_DISC PHASE_CPU, 211
hwloc_disc_phase_e, 211
HWLOC_DISC_PHASE_GLOBAL, 211
HWLOC_DISC_PHASE_IO, 211
HWLOC_DISC_PHASE_MEMORY, 211
HWLOC_DISC_PHASE_MISC, 211
HWLOC _DISC_PHASE_PCI, 211
hwloc_disc_phase_t, 211
HWLOC_DISC_PHASE TWEAK, 212
hwloc_disc_status_flag_e, 212

hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_ty

232

CPU and Memory Binding Overview, 27

CPU and node sets of entire topologies, 145
hwloc_topology_get_allowed_cpuset, 146
hwloc_topology_get_allowed_nodeset, 146
hwloc_topology_get_complete_cpuset, 146
hwloc_topology_get_complete_nodeset, 147
hwloc_topology_get_topology_cpuset, 147
hwloc_topology_get topology nodeset, 147

CPU binding, 105
hwloc_cpubind_flags_t, 106
HWLOC_CPUBIND_NOMEMBIND, 106

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURUES; CPUBIND_PROCESS, 106

212
Components and Plugins: distances, 218
hwloc_backend_distances_add commit, 219
hwloc_backend_distances_add_create, 219
hwloc_backend_distances_add_handle_t, 219
hwloc_backend_distances_add_values, 219
Components and Plugins: Filtering objects, 215
hwloc_filter_check_keep_object, 216
hwloc_filter_check_keep_object_type, 216
hwloc_filter_check_osdev_subtype_important, 216
hwloc_filter_check_pcidev_subtype_important,
216
Components and Plugins: finding PCI objects during
other discoveries, 218
hwloc_pci_find_by_busid, 218
hwloc_pci_find_parent_by busid, 218
Components and Plugins: Generic components, 212
HWLOC_COMPONENT_TYPE_DISC, 213
hwloc_component_type_e, 213
hwloc_component_type_t, 213
HWLOC_COMPONENT_TYPE_XML, 213
hwloc_plugin_check_namespace, 213
Components and Plugins: helpers for PCl discovery, 216
hwloc_pcidisc_check_bridge_type, 217
hwloc_pcidisc_find_bridge_buses, 217
hwloc_pcidisc_find_cap, 217
hwloc_pcidisc_find_linkspeed, 217
hwloc_pcidisc_tree_attach, 217
hwloc_pcidisc_tree_insert_by_busid, 217
Consulting and Adding Info Attributes, 103
hwloc_obj_add_info, 104
hwloc_obj_get_info_by_name, 104
hwloc_obj_set_subtype, 104
Converting between CPU sets and node sets, 148
hwloc_cpuset_from_nodeset, 148
hwloc_cpuset_to_nodeset, 148
Converting between Object Types and Attributes, and
Strings, 102
hwloc_obj_attr_snprintf, 102
hwloc_obj_type_snprintf, 102
hwloc_obj_type_string, 102
hwloc_type_sscanf, 103
hwloc_type_sscanf_as_depth, 103
count

HWLOC_CPUBIND_STRICT, 106
HWLOC_CPUBIND_THREAD, 106
hwloc_get_cpubind, 106
hwloc_get_last_cpu_location, 107
hwloc_get_proc_cpubind, 107
hwloc_get_proc_last_cpu_location, 107
hwloc_get_thread_cpubind, 108
hwloc_set_cpubind, 108
hwloc_set_proc_cpubind, 108
hwloc_set_thread_cpubind, 109
cpubind
hwloc_topology_support, 250
cpukind_efficiency
hwloc_topology_discovery_support, 247
cpuset
hwloc_location::hwloc_location_u, 231
hwloc_obj, 234

data
hwloc_cl_device_topology_amd, 225
hwloc_component, 226
depth
hwloc_obj, 235
hwloc_obj_attr_u::hwloc_bridge_attr_s, 222
hwloc_obj_attr_u::hwloc_cache_atir_s, 224
hwloc_obj_attr_u::hwloc_group_attr_s, 230
dev
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239
device
hwloc_cl_device_topology_amd, 225
device_id
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239
diff

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,

243
disable
hwloc_backend, 221
disallowed_numa
hwloc_topology_discovery_support, 247
disallowed_pu
hwloc_topology_discovery_support, 247
discover
hwloc_backend, 221
discovery
hwloc_topology_support, 250

Generated by Doxygen

INDEX

253

Distributing items over a topology, 144
hwloc_distrib, 145
HWLOC_DISTRIB_FLAG_REVERSE, 145
hwloc_distrib_flags_e, 145

domain
hwloc_obj_attr_u::hwloc_bridge_attr_s, 222
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239

dont_merge
hwloc_obj_attr_u::hwloc_group_attr_s, 230

downstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 223

downstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 223

Embedding hwloc in Other Software, 63
enabled_by default
hwloc_disc_component, 227
Environment Variables, 23
Error reporting in the API, 89
excluded_phases
hwloc_disc_component, 227
hwloc_disc_status, 228
Exporting Topologies to Synthetic, 166
hwloc_topology_export_synthetic, 166

hwloc_get_next_obj_covering_cpuset_by_depth,
138

hwloc_get_next_obj_covering_cpuset_by_type,
138

hwloc_get_obj_covering_cpuset, 138

Finding Objects inside a CPU set, 134

hwloc_get_first_largest_obj_inside_cpuset, 134
hwloc_get_largest_objs_inside_cpuset, 134
hwloc_get_nbobjs_inside_cpuset_by_depth, 135
hwloc_get_nbobjs_inside_cpuset_by_type, 135
hwloc_get_next_obj_inside_cpuset_by_depth, 135
hwloc_get_next_obj_inside_cpuset_by_type, 136
hwloc_get_obj_index_inside_cpuset, 136
hwloc_get_obj_inside_cpuset_by_depth, 136
hwloc_get_obj_inside_cpuset_by_type, 137

Finding objects, miscellaneous helpers, 142

hwloc_bitmap_singlify_per_core, 142
hwloc_get_closest_objs, 142
hwloc_get_numanode_obj_by_os_index, 143
hwloc_get_obj_below_array_by_type, 143
hwloc_get_obj_below_by_type, 143
hwloc_get_obj_with_same_locality, 144
hwloc_get_pu_obj_by os_index, 144

first_child

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGN{ite_MEMARY,

166

firsttouch_membind

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NOn@iotRfpology membind_support, 248

166

flags

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NOnhkiEENRRENT YBES,

166

hwloc_component, 226

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1,hwloc_disc_status, 228

166

hwloc_topology_export_synthetic_flags_e, 166

Exporting Topologies to XML, 162

hwloc_export_obj_userdata, 163
hwloc_export_obj_userdata_base64, 163
hwloc_free_xmlbuffer, 164
hwloc_topology_export_xml, 164
HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1,
163
hwloc_topology_export_xml_flags_e, 163
hwloc_topology_export_xmlbuffer, 164
hwloc_topology_set_userdata_export_callback,
165
hwloc_topology_set_userdata_import_callback,
165

finalize

hwloc_component, 226

Finding 1/0O objects, 148

hwloc_bridge_covers_pcibus, 149
hwloc_get_next_bridge, 149
hwloc_get_next_osdev, 149
hwloc_get_next_pcidev, 149
hwloc_get_non_io_ancestor_obj, 149
hwloc_get_pcidev_by busid, 150
hwloc_get_pcidev_by_busidstring, 150

Finding Objects covering at least CPU set, 137

hwloc_get_child_covering_cpuset, 137

Frequently Asked Questions (FAQ), 67
func

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240
function

hwloc_cl_device_topology_amd, 225

generic
hwloc_topology_diff_obj_attr_u, 244
hwloc_topology_diff_u, 246
get_area_membind
hwloc_topology_membind_support, 248
get_area_memlocation
hwloc_topology_membind_support, 248
get_pci_busid_cpuset
hwloc_backend, 221
get_proc_cpubind
hwloc_topology_cpubind_support, 241
get_proc_last_cpu_location
hwloc_topology_cpubind_support, 241
get_proc_membind
hwloc_topology_membind_support, 248
get_thisproc_cpubind
hwloc_topology_cpubind_support, 241
get_thisproc_last_cpu_location
hwloc_topology_cpubind_support, 241
get_thisproc_membind
hwloc_topology_membind_support, 248
get_thisthread_cpubind

Generated by Doxygen

254

INDEX

hwloc_topology_cpubind_support, 241
get_thisthread_last_cpu_location
hwloc_topology_cpubind_support, 241
get_thisthread _membind
hwloc_topology_membind_support, 248
get_thread_cpubind
hwloc_topology_cpubind_support, 241
gp_index
hwloc_obj, 235
group
hwloc_obj_attr_u, 238

Hardware Locality, 1
Helpers for consulting distance matrices, 171
hwloc_distances_obj_index, 171
hwloc_distances_obj_pair_values, 171
Heterogeneous Memory, 47
hwloc__insert_object_by_cpuset
Components and Plugins: Core functions to be
used by components, 214
hwloc_alloc
Memory binding, 112
hwloc_alloc_membind
Memory binding, 112
hwloc_alloc_membind_policy
Memory binding, 113
hwloc_alloc_setup_object
Components and Plugins: Core functions to be
used by components, 214
HWLOC_ALLOW_FLAG_ALL
Modifying a loaded Topology, 128
HWLOC_ALLOW_FLAG_CUSTOM
Modifying a loaded Topology, 128
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS
Modifying a loaded Topology, 128
hwloc_allow_flags_e
Modifying a loaded Topology, 128
HWLOC_API_VERSION
API version, 89
hwloc_backend, 221
disable, 221
discover, 221
flags, 221
get_pci_busid_cpuset, 221
is_thissystem, 222
phases, 222
private_data, 222
hwloc_backend_alloc
Components and Plugins: Discovery components
and backends, 212
hwloc_backend_distances_add_commit
Components and Plugins: distances, 219
hwloc_backend_distances_add_create
Components and Plugins: distances, 219
hwloc_backend_distances_add_handle_t
Components and Plugins: distances, 219
hwloc_backend_distances_add_values
Components and Plugins: distances, 219
hwloc_backend_enable

Components and Plugins
and backends, 212

hwloc_bitmap_allbut

The bitmap API, 152
hwloc_bitmap_alloc

The bitmap API, 152
hwloc_bitmap_alloc_full

The bitmap API, 153
hwloc_bitmap_and

The bitmap API, 153
hwloc_bitmap_andnot

The bitmap API, 153
hwloc_bitmap_asprintf

The bitmap API, 153
hwloc_bitmap_clr

The bitmap API, 153
hwloc_bitmap_clr_range

The bitmap API, 153
hwloc_bitmap_compare

The bitmap API, 154

hwloc_bitmap_compare_first

The bitmap API, 154
hwloc_bitmap_copy

The bitmap API, 154
hwloc_bitmap_dup

The bitmap API, 154
hwloc_bitmap_fill

The bitmap API, 155
hwloc_bitmap_first

The bitmap API, 155
hwloc_bitmap_first_unset

The bitmap API, 155

hwloc_bitmap_foreach_begin

The bitmap API, 152
hwloc_bitmap_foreach_end

The bitmap API, 152
hwloc_bitmap_free

The bitmap API, 155

hwloc_bitmap_from_ith_ulong

The bitmap API, 155
hwloc_bitmap_from_ulong

The bitmap API, 155
hwloc_bitmap_from_ulongs

The bitmap API, 155
hwloc_bitmap_intersects

The bitmap API, 156
hwloc_bitmap_isequal

The bitmap API, 156
hwloc_bitmap_isfull

The bitmap API, 156
hwloc_bitmap_isincluded

The bitmap API, 156
hwloc_bitmap_isset

The bitmap API, 156
hwloc_bitmap_iszero

The bitmap API, 157
hwloc_bitmap_last

The bitmap API, 157

: Discovery components

Generated by Doxygen

INDEX

255

hwloc_bitmap_last_unset

The bitmap API, 157
hwloc_bitmap_list_asprintf

The bitmap API, 157
hwloc_bitmap_list_snprintf

The bitmap API, 157
hwloc_bitmap_list_sscanf

The bitmap API, 158
hwloc_bitmap_next

The bitmap API, 158
hwloc_bitmap_next_unset

The bitmap API, 158
hwloc_bitmap_not

The bitmap API, 158
hwloc_bitmap_nr_ulongs

The bitmap API, 159
hwloc_bitmap_only

The bitmap API, 159
hwloc_bitmap_or

The bitmap API, 159
hwloc_bitmap_set

The bitmap API, 159
hwloc_bitmap_set_ith_ulong

The bitmap API, 159
hwloc_bitmap_set_range

The bitmap API, 159
hwloc_bitmap_singlify

The bitmap API, 160
hwloc_bitmap_singlify_per_core

Finding objects, miscellaneous helpers, 142
hwloc_bitmap_snprintf

The bitmap API, 160
hwloc_bitmap_sscanf

The bitmap API, 160
hwloc_bitmap_t

The bitmap API, 152
hwloc_bitmap_taskset_asprintf

The bitmap API, 160
hwloc_bitmap_taskset_snprintf

The bitmap API, 161
hwloc_bitmap_taskset_sscanf

The bitmap API, 161
hwloc_bitmap_to_ith_ulong

The bitmap API, 161
hwloc_bitmap_to_ulong

The bitmap API, 161
hwloc_bitmap_to_ulongs

The bitmap API, 162
hwloc_bitmap_weight

The bitmap API, 162
hwloc_bitmap_xor

The bitmap API, 162
hwloc_bitmap_zero

The bitmap API, 162
hwloc_bridge_covers_pcibus

Finding 1/O objects, 149
hwloc_cl_device_pci_bus_info_khr, 224

pci_bus, 224

pci_device, 224
pci_domain, 224
pci_function, 224
hwloc_cl_device_topology_amd, 225
bus, 225
data, 225
device, 225
function, 225
pcie, 225
raw, 225
type, 225
unused, 225
hwloc_compare_types
Object Types, 94
hwloc_component, 225
abi, 226
data, 226
finalize, 226
flags, 226
init, 226
type, 226
HWLOC_COMPONENT_ABI
API version, 89
HWLOC_COMPONENT_TYPE_DISC
Components and Plugins: Generic components,
213
hwloc_component_type_e
Components and Plugins: Generic components,
213
hwloc_component_type_t
Components and Plugins: Generic components,
213
HWLOC_COMPONENT_TYPE_XML
Components and Plugins: Generic components,
213
hwloc_const_bitmap_t
The bitmap API, 152
hwloc_const_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
90
hwloc_const_nodeset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset t),
90
hwloc_cpubind_flags_t
CPU binding, 106
HWLOC_CPUBIND_NOMEMBIND
CPU binding, 106
HWLOC_CPUBIND_PROCESS
CPU binding, 106
HWLOC_CPUBIND_STRICT
CPU binding, 106
HWLOC_CPUBIND_THREAD
CPU binding, 106
hwloc_cpukinds_get_by cpuset
Kinds of CPU cores, 185
hwloc_cpukinds_get_info
Kinds of CPU cores, 186
hwloc_cpukinds_get_nr

Generated by Doxygen

256

INDEX

Kinds of CPU cores, 186
hwloc_cpukinds_register
Kinds of CPU cores, 186
hwloc_cpuset_from_glibc_sched_affinity
Interoperability with glibc sched affinity, 192
hwloc_cpuset_from_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 190
hwloc_cpuset_from_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 189
hwloc_cpuset_from_nodeset
Converting between CPU sets and node sets, 148
hwloc_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset _t),
90
hwloc_cpuset_to_glibc_sched_affinity
Interoperability with glibc sched affinity, 193
hwloc_cpuset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 190
hwloc_cpuset_to_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 189
hwloc_cpuset_to_nodeset
Converting between CPU sets and node sets, 148
hwloc_cuda_get_device_cpuset
Interoperability with the CUDA Driver API, 195
hwloc_cuda_get_device_osdev
Interoperability with the CUDA Driver API, 195
hwloc_cuda_get_device_osdev_by_index
Interoperability with the CUDA Driver API, 195
hwloc_cuda_get_device_pci_ids
Interoperability with the CUDA Driver API, 196
hwloc_cuda_get_device_pcidev
Interoperability with the CUDA Driver API, 196
hwloc_cudart_get_device_cpuset
Interoperability with the CUDA Runtime API, 197
hwloc_cudart_get_device_osdev_by_index
Interoperability with the CUDA Runtime API, 197
hwloc_cudart_get_device_pci_ids
Interoperability with the CUDA Runtime API, 197
hwloc_cudart_get_device_pcidev
Interoperability with the CUDA Runtime API, 197
hwloc_disc_component, 227
enabled_by default, 227
excluded_phases, 227
instantiate, 227
name, 227
phases, 227
priority, 227
HWLOC_DISC_PHASE_ANNOTATE
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_CPU
Components and Plugins: Discovery components
and backends, 211
hwloc_disc_phase_e
Components and Plugins: Discovery components
and backends, 211

HWLOC_DISC_PHASE_GLOBAL
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_IO
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_MEMORY
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_MISC
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_PCI
Components and Plugins: Discovery components
and backends, 211
hwloc_disc_phase_t
Components and Plugins: Discovery components
and backends, 211
HWLOC_DISC_PHASE_TWEAK
Components and Plugins: Discovery components
and backends, 212
hwloc_disc_status, 228
excluded_phases, 228
flags, 228
phase, 228
hwloc_disc_status_flag_e
Components and Plugins: Discovery components
and backends, 212

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCES

Components and Plugins: Discovery components
and backends, 212

hwloc_distances_add_commit

Add distances between objects, 173
hwloc_distances_add_create

Add distances between objects, 173
hwloc_distances_add_flag_e

Add distances between objects, 172
HWLOC_DISTANCES_ADD_FLAG_GROUP

Add distances between objects, 172
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE

Add distances between objects, 172
hwloc_distances add_handle t

Add distances between objects, 172
hwloc_distances_add_values

Add distances between objects, 173
hwloc_distances_get

Retrieve distances between objects, 169
hwloc_distances_get_by depth

Retrieve distances between objects, 169
hwloc_distances_get_by_name

Retrieve distances between objects, 169
hwloc_distances_get_by_type

Retrieve distances between objects, 170
hwloc_distances_get_name

Retrieve distances between objects, 170
hwloc_distances_kind_e

Retrieve distances between objects, 167
HWLOC_DISTANCES_KIND_FROM_OS

Generated by Doxygen

INDEX 257

Retrieve distances between objects, 167 hwloc_free
HWLOC_DISTANCES_KIND_FROM_USER Memory binding, 113

Retrieve distances between objects, 167 hwloc_free_xmlbuffer
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES Exporting Topologies to XML, 164

Retrieve distances between objects, 168 hwloc_get_ancestor_obj_by_depth
HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH Looking at Ancestor and Child Objects, 139

Retrieve distances between objects, 168 hwloc_get_ancestor_obj_by_type
HWLOC_DISTANCES_KIND_MEANS_LATENCY Looking at Ancestor and Child Objects, 139

Retrieve distances between objects, 168 hwloc_get_api_version
hwloc_distances_obj_index APl version, 90

Helpers for consulting distance matrices, 171 hwloc_get_area_membind
hwloc_distances_obj_pair_values Memory binding, 113

Helpers for consulting distance matrices, 171 hwloc_get_area_memlocation
hwloc_distances_release Memory binding, 114

Retrieve distances between objects, 170 hwloc_get_cache_covering_cpuset
hwloc_distances_release remove Looking at Cache Objects, 141

Remove distances between objects, 174 hwloc_get_cache_type_depth
hwloc_distances_remove Looking at Cache Objects, 141

Remove distances between objects, 174 hwloc_get_child_covering_cpuset
hwloc_distances_remove_by_depth Finding Objects covering at least CPU set, 137

Remove distances between objects, 174 hwloc_get_closest_objs
hwloc_distances_remove_by_type Finding objects, miscellaneous helpers, 142

Remove distances between objects, 174 hwloc_get_common_ancestor_obj
hwloc_distances_s, 228 Looking at Ancestor and Child Objects, 140

kind, 229 hwloc_get_cpubind

nbobjs, 229 CPU binding, 106

objs, 229 hwloc_get_depth_type

values, 229 Object levels, depths and types, 98
hwloc_distances_transform hwloc_get_first_largest_obj_inside_cpuset

Retrieve distances between objects, 170 Finding Objects inside a CPU set, 134
hwloc_distances_transform_e hwloc_get_largest_objs_inside_cpuset

Retrieve distances between objects, 168 Finding Objects inside a CPU set, 134
HWLOC_DISTANCES TRANSFORM_LINKS hwloc_get_last_cpu_location

Retrieve distances between objects, 168 CPU binding, 107
HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_HR@&T8et_local_numanode_objs

Retrieve distances between objects, 168 Comparing memory node attributes for finding
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL where to allocate on, 178

Retrieve distances between objects, 168 hwloc_get_membind
HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURKemory binding, 114

Retrieve distances between objects, 169 hwloc_get_memory_parents_depth
hwloc_distrib Object levels, depths and types, 99

Distributing items over a topology, 145 hwloc_get_nbobjs_by depth
HWLOC_DISTRIB_FLAG_REVERSE Object levels, depths and types, 99

Distributing items over a topology, 145 hwloc_get_nbobjs_by_type
hwloc_distrib_flags_e Object levels, depths and types, 99

Distributing items over a topology, 145 hwloc_get_nbobjs_inside_cpuset_by_depth
hwloc_export_obj_userdata Finding Objects inside a CPU set, 135

Exporting Topologies to XML, 163 hwloc_get_nbobjs_inside_cpuset_by_type
hwloc_export_obj_userdata_base64 Finding Objects inside a CPU set, 135

Exporting Topologies to XML, 163 hwloc_get_next_bridge
hwloc_filter_check_keep_object Finding 1/0O objects, 149

Components and Plugins: Filtering objects, 216 hwloc_get_next_child
hwloc_filter_check_keep_object_type Looking at Ancestor and Child Objects, 140

Components and Plugins: Filtering objects, 216 hwloc_get_next_obj_by_depth
hwloc_filter_check_osdev_subtype_important Object levels, depths and types, 99

Components and Plugins: Filtering objects, 216 hwloc_get_next_obj_by_type
hwloc_filter_check_pcidev_subtype_important Object levels, depths and types, 99

Components and Plugins: Filtering objects, 216 hwloc_get_next_obj_covering_cpuset_by_depth

Generated by Doxygen

258

INDEX

Finding Objects covering at least CPU set, 138
hwloc_get_next_obj_covering_cpuset_by_type

Finding Objects covering at least CPU set, 138
hwloc_get_next_obj_inside_cpuset_by_depth

Finding Objects inside a CPU set, 135
hwloc_get_next_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 136
hwloc_get_next_osdev

Finding 1/0O objects, 149
hwloc_get_next_pcidev

Finding 1/0O objects, 149
hwloc_get_non_io_ancestor_obj

Finding 1/O objects, 149
hwloc_get_numanode_obj_by_os_index

Finding objects, miscellaneous helpers, 143
hwloc_get_obj_below_array_by type

Finding objects, miscellaneous helpers, 143
hwloc_get_obj_below_by_type

Finding objects, miscellaneous helpers, 143
hwloc_get_obj_by_depth

Object levels, depths and types, 100
hwloc_get_obj_by_type

Object levels, depths and types, 100
hwloc_get_obj_covering_cpuset

Finding Objects covering at least CPU set, 138
hwloc_get_obj_index_inside_cpuset

Finding Objects inside a CPU set, 136
hwloc_get_obj_inside_cpuset_by_depth

Finding Objects inside a CPU set, 136
hwloc_get_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 137
hwloc_get_obj_with_same_locality

Finding objects, miscellaneous helpers, 144
hwloc_get_pcidev_by_busid

Finding 1/0O objects, 150
hwloc_get_pcidev_by_busidstring

Finding 1/0O objects, 150
hwloc_get_proc_cpubind

CPU binding, 107
hwloc_get_proc_last_cpu_location

CPU binding, 107
hwloc_get_proc_membind

Memory binding, 115
hwloc_get_pu_obj_by os_index

Finding objects, miscellaneous helpers, 144
hwloc_get_root_obj

Object levels, depths and types, 100
hwloc_get_shared_cache_covering_obj

Looking at Cache Objects, 141
hwloc_get_thread_cpubind

CPU binding, 108
hwloc_get_type_depth

Object levels, depths and types, 100
hwloc_get_type_depth_e

Object levels, depths and types, 98
hwloc_get_type_or_above_depth

Object levels, depths and types, 101
hwloc_get_type_or_below_depth

Object levels, depths and types, 101
hwloc_gl_get_display by osdev
Interoperability with OpenGL displays, 202
hwloc_gl_get_display_osdev_by_name
Interoperability with OpenGL displays, 203
hwloc_gl_get_display_osdev_by_port_device
Interoperability with OpenGL displays, 203
hwloc_hide_errors
Components and Plugins: Core functions to be
used by components, 214
hwloc_ibv_get_device_cpuset
Interoperability with OpenFabrics, 204
hwloc_ibv_get_device_osdev
Interoperability with OpenFabrics, 204
hwloc_ibv_get_device_osdev_by name
Interoperability with OpenFabrics, 204
hwloc_info_s, 230
name, 230
value, 230
hwloc_insert_object_by_parent
Components and Plugins: Core functions to be
used by components, 215
hwloc_levelzero_get_device_cpuset
Interoperability with the oneAPI Level Zero inter-
face., 201
hwloc_levelzero_get_device_osdev
Interoperability with the oneAPI Level Zero inter-
face., 201
hwloc_levelzero_get_sysman_device_cpuset
Interoperability with the oneAPI Level Zero inter-
face., 201
hwloc_levelzero_get_sysman_device_osdev
Interoperability with the oneAPI Level Zero inter-
face., 202
hwloc_linux_get_tid_cpubind
Linux-specific helpers, 187
hwloc_linux_get_tid_last_cpu_location
Linux-specific helpers, 187
hwloc_linux_read_path_as_cpumask
Linux-specific helpers, 188
hwloc_linux_set_tid_cpubind
Linux-specific helpers, 188
HWLOC_LOCAL_NUMANODE_FLAG_ALL
Comparing memory node attributes for finding
where to allocate on, 177
hwloc_local_numanode_flag_e
Comparing memory node attributes for finding
where to allocate on, 176

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT_LOCALITY

Comparing memory node attributes for finding
where to allocate on, 177

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY

Comparing memory node attributes for finding
where to allocate on, 176

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY

Comparing memory node attributes for finding
where to allocate on, 177
hwloc_location, 230

Generated by Doxygen

INDEX 259
location, 231 where to allocate on, 177
type, 231 HWLOC_MEMATTR_ID_READ_BANDWIDTH
hwloc_location::hwloc_location_u, 231 Comparing memory node attributes for finding
cpuset, 231 where to allocate on, 178
object, 231 HWLOC_MEMATTR_ID_READ_LATENCY
HWLOC_LOCATION_TYPE_CPUSET Comparing memory node attributes for finding
Comparing memory node attributes for finding where to allocate on, 178
where to allocate on, 177 hwloc_memattr_id_t
hwloc_location_type_e Comparing memory node attributes for finding
Comparing memory node attributes for finding where to allocate on, 176
where to allocate on, 177 HWLOC_MEMATTR_ID_WRITE_BANDWIDTH
HWLOC_LOCATION_TYPE_OBJECT Comparing memory node attributes for finding
Comparing memory node attributes for finding where to allocate on, 178
where to allocate on, 177 HWLOC_MEMATTR_ID_WRITE_LATENCY
hwloc_memattr_flag_e Comparing memory node attributes for finding
Managing memory attributes, 183 where to allocate on, 178
HWLOC_MEMATTR_FLAG_HIGHER_FIRST hwloc_memattr_register
Managing memory attributes, 183 Managing memory attributes, 184
HWLOC_MEMATTR_FLAG_LOWER_FIRST hwloc_memattr_set value
Managing memory attributes, 183 Managing memory attributes, 184
HWLOC_MEMATTR_FLAG_NEED_INITIATOR HWLOC_MEMBIND_BIND
Managing memory attributes, 183 Memory binding, 112
hwloc_memattr_get_best_initiator HWLOC_MEMBIND_BYNODESET
Comparing memory node attributes for finding Memory binding, 111
where to allocate on, 179 HWLOC_ MEMBIND_ DEFAULT
hwloc_memattr_get_best_target Memory binding, 111
Comparing memory node attributes for finding HWLOC_MEMBIND_FIRSTTOUCH
where to allocate on, 179 Memory binding, 111
hwloc_memattr_get_by_name hwloc_membind_flags_t
Comparing memory node attributes for finding Memory binding, 110
where to allocate on, 180 HWLOC_MEMBIND_INTERLEAVE
hwloc_memattr_get_flags Memory binding, 112
Managing memory attributes, 183 HWLOC_MEMBIND_MIGRATE
hwloc_memattr_get_initiators Memory binding, 111
Comparing memory node attributes for finding HWLOC_MEMBIND_MIXED
where to allocate on, 180 Memory binding, 112
hwloc_memattr_get_name HWLOC_MEMBIND_NEXTTOUCH
Managing memory attributes, 184 Memory binding, 112
hwloc_memattr_get_targets HWLOC_MEMBIND_NOCPUBIND
Comparing memory node attributes for finding Memory binding, 111
where to allocate on, 181 hwloc_membind_policy_t
hwloc_memattr_get_value Memory binding, 111
Comparing memory node attributes for finding HWLOC_MEMBIND_PROCESS
where to allocate on, 181 Memory binding, 111
HWLOC_MEMATTR_ID_BANDWIDTH HWLOC_MEMBIND_STRICT
Comparing memory node attributes for finding Memory binding, 111
where to allocate on, 178 HWLOC_MEMBIND_THREAD
HWLOC_MEMATTR_ID_CAPACITY Memory binding, 111
Comparing memory node attributes for finding HWLOC_MEMBIND_WEIGHTED_INTERLEAVE
where to allocate on, 177 Memory binding, 112
hwloc_memattr_id e hwloc_nodeset_from_linux_libnuma_bitmask
Comparing memory node attributes for finding Interoperability with Linux libnuma bitmask, 191
where to allocate on, 177 hwloc_nodeset_from_linux_libnuma_ulongs
HWLOC_MEMATTR_ID_LATENCY Interoperability with Linux libnuma unsigned long
Comparing memory node attributes for finding masks, 189
where to allocate on, 178 hwloc_nodeset_t
HWLOC_MEMATTR_ID_LOCALITY Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
Comparing memory node attributes for finding 90

Generated by Doxygen

260

INDEX

hwloc_nodeset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 191
hwloc_nodeset_to_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 190
hwloc_nvml_get_device_cpuset
Interoperability with the NVIDIA Management Li-
brary, 198
hwloc_nvml_get_device_osdev
Interoperability with the NVIDIA Management Li-
brary, 198
hwloc_nvml_get_device_osdev_by_index
Interoperability with the NVIDIA Management Li-
brary, 199
hwloc_obj, 233
arity, 234
attr, 234
children, 234
complete_cpuset, 234
complete_nodeset, 234
cpuset, 234
depth, 235
first_child, 235
gp_index, 235
infos, 235
infos_count, 235
io_arity, 235
io_first_child, 235
last_child, 235
logical_index, 235
memory_arity, 235
memory_first_child, 236
misc_arity, 236
misc_first_child, 236
name, 236
next_cousin, 236
next_sibling, 236
nodeset, 236
os_index, 236
parent, 237
prev_cousin, 237
prev_sibling, 237
sibling_rank, 237
subtype, 237
symmetric_subtree, 237
total_memory, 237
type, 237
userdata, 237
hwloc_obj_add_children_sets
Components and Plugins: Core functions to be
used by components, 215
hwloc_obj_add_info
Consulting and Adding Info Attributes, 104
hwloc_obj_add_other_obj_sets
Modifying a loaded Topology, 129
hwloc_obj_attr_snprintf
Converting between Object Types and Attributes,
and Strings, 102

hwloc_obj_attr_u, 238

bridge, 238
cache, 238
group, 238
numanode, 238
osdev, 238
pcidev, 238

hwloc_obj_attr_u::hwloc_bridge_attr_s, 222

depth, 222

domain, 222
downstream, 223
downstream_type, 223
pci, 223
secondary_bus, 223
subordinate _bus, 223
upstream, 223
upstream_type, 223

hwloc_obj_attr_u::hwloc_cache_atir_s, 223

associativity, 224
depth, 224
linesize, 224
size, 224

type, 224

hwloc_obj_attr_u::hwloc_group_attr_s, 229

depth, 230
dont_merge, 230
kind, 230
subkind, 230

hwloc_obj_attr_u::hwloc_numanode_attr_s, 232

local_memory, 232
page_types, 232
page_types_len, 232

231
count, 232
size, 232

hwloc_obj_attr_u::hwloc_osdev_attr_s, 238

type, 239

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 239

bus, 239
class_id, 239

dev, 239
device_id, 239
domain, 239

func, 240
linkspeed, 240
revision, 240
subdevice _id, 240
subvendor _id, 240
vendor_id, 240

HWLOC_OBJ_BRIDGE

Object Types, 93

HWLOC_OBJ_BRIDGE_HOST

Object Types, 92

HWLOC_OBJ_BRIDGE_PCI

Object Types, 92

hwloc_obj_bridge_type_e

Object Types, 92

hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s

Generated by Doxygen

INDEX

261

hwloc_obj_bridge_type_t

Object Types, 91
HWLOC_OBJ_CACHE_DATA

Object Types, 92
HWLOC_OBJ_CACHE_INSTRUCTION

Object Types, 92
hwloc_obj_cache_type_e

Object Types, 92
hwloc_obj_cache_type_t

Object Types, 91
HWLOC_OBJ_CACHE_UNIFIED

Object Types, 92
HWLOC_OBJ_CORE

Object Types, 93
HWLOC_OBJ_DIE

Object Types, 94
hwloc_obj_get_info_by_name

Consulting and Adding Info Attributes, 104
HWLOC_OBJ_GROUP

Object Types, 93
hwloc_obj_is_in_subtree

Looking at Ancestor and Child Objects, 140
HWLOC_OBJ_L1CACHE

Object Types, 93
HWLOC_OBJ_L1ICACHE

Object Types, 93
HWLOC_OBJ_L2CACHE

Object Types, 93
HWLOC_OBJ_L2ICACHE

Object Types, 93
HWLOC_OBJ_L3CACHE

Object Types, 93
HWLOC_OBJ_L3ICACHE

Object Types, 93
HWLOC_OBJ_L4CACHE

Object Types, 93
HWLOC_OBJ_L5CACHE

Object Types, 93
HWLOC_OBJ_MACHINE

Object Types, 93
HWLOC_OBJ_MEMCACHE

Object Types, 94
HWLOC_OBJ_MISC

Object Types, 94
HWLOC_OBJ_NUMANODE

Object Types, 93
HWLOC_OBJ_OS_DEVICE

Object Types, 94
HWLOC_OBJ_OSDEV_BLOCK

Object Types, 92
HWLOC_OBJ_OSDEV_COPROC

Object Types, 92
HWLOC_OBJ_OSDEV_DMA

Object Types, 92
HWLOC_OBJ_OSDEV_GPU

Object Types, 92
HWLOC_OBJ_OSDEV_NETWORK

Object Types, 92

HWLOC_OBJ_OSDEV_OPENFABRICS
Object Types, 92
hwloc_obj_osdev_type_e
Object Types, 92
hwloc_obj_osdev_type_t
Object Types, 91
HWLOC_OBJ_PACKAGE
Object Types, 93
HWLOC_OBJ_PCI_DEVICE
Object Types, 94
HWLOC_OBJ_PU
Object Types, 93
hwloc_obj_set_subtype
Consulting and Adding Info Attributes, 104
hwloc_obj_t
Object Structure and Attributes, 95
hwloc_obj_type_is_cache
Kinds of object Type, 133
hwloc_obj_type_is_dcache
Kinds of object Type, 133
hwloc_obj_type_is_icache
Kinds of object Type, 133
hwloc_obj_type_is_io
Kinds of object Type, 133
hwloc_obj_type_is_memory
Kinds of object Type, 133
hwloc_obj_type_is_normal
Kinds of object Type, 133
hwloc_obj_type_snprintf
Converting between Object Types and Attributes,
and Strings, 102
hwloc_obj_type_string
Converting between Object Types and Attributes,
and Strings, 102
hwloc_obj_type_t
Object Types, 92
hwloc_opencl_get_device_cpuset
Interoperability with OpenCL, 193
hwloc_opencl_get_device_osdev
Interoperability with OpenCL, 194
hwloc_opencl_get_device_osdev_by_index
Interoperability with OpenCL, 194
hwloc_opencl_get_device_pci_busid
Interoperability with OpenCL, 194
hwloc_pci_find_by_busid
Components and Plugins: finding PCI objects dur-
ing other discoveries, 218
hwloc_pci_find_parent_by_busid
Components and Plugins: finding PCI objects dur-
ing other discoveries, 218
hwloc_pcidisc_check_bridge_type
Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_pcidisc_find_bridge_buses
Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_pcidisc_find_cap

Generated by Doxygen

262

INDEX

Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_pcidisc_find_linkspeed
Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_pcidisc_tree_attach
Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_pcidisc_tree_insert_by busid
Components and Plugins: helpers for PCI discov-
ery, 217
hwloc_plugin_check_namespace
Components and Plugins: Generic components,
213
HWLOC_RESTRICT_FLAG_ADAPT_IO
Modifying a loaded Topology, 129
HWLOC_RESTRICT_FLAG_ADAPT_MISC
Modifying a loaded Topology, 129
HWLOC_RESTRICT_FLAG_BYNODESET
Modifying a loaded Topology, 128
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS
Modifying a loaded Topology, 128
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS
Modifying a loaded Topology, 129
hwloc_restrict_flags_e
Modifying a loaded Topology, 128
hwloc_rsmi_get_device_cpuset
Interoperability with the ROCm SMI Management
Library, 199
hwloc_rsmi_get_device_osdev
Interoperability with the ROCm SMI Management
Library, 200
hwloc_rsmi_get_device_osdev_by_index
Interoperability with the ROCm SMI Management
Library, 200
hwloc_set _area_membind
Memory binding, 115
hwloc_set_cpubind
CPU binding, 108
hwloc_set_membind
Memory binding, 115
hwloc_set_proc_cpubind
CPU binding, 108
hwloc_set_proc_membind
Memory binding, 116
hwloc_set_thread_cpubind
CPU binding, 109
hwloc_shmem_topology_adopt
Sharing topologies between processes, 209
hwloc_shmem_topology_get_length
Sharing topologies between processes, 210
hwloc_shmem_topology_write
Sharing topologies between processes, 210
HWLOC_SHOW_ALL_ERRORS
Components and Plugins: Core functions to be
used by components, 214
HWLOC_SHOW_CRITICAL_ERRORS

Components and Plugins: Core functions to be
used by components, 214

hwloc_topology_abi_check

Topology Creation and Destruction, 96
hwloc_topology_alloc_group_object

Modifying a loaded Topology, 129
hwloc_topology_allow

Modifying a loaded Topology, 129
hwloc_topology_check

Topology Creation and Destruction, 96

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST

Changing the Source of Topology Discovery, 117
hwloc_topology_components_flag_e

Changing the Source of Topology Discovery, 117
hwloc_topology_cpubind_support, 240

get_proc_cpubind, 241

get_proc_last_cpu_location, 241

get_thisproc_cpubind, 241

get_thisproc_last_cpu_location, 241

get_thisthread_cpubind, 241

get_thisthread_last_cpu_location, 241

get_thread_cpubind, 241

set_proc_cpubind, 241

set_thisproc_cpubind, 241

set_thisthread_cpubind, 241

set_thread_cpubind, 241
hwloc_topology_destroy

Topology Creation and Destruction, 96
hwloc_topology_diff_apply

Topology differences, 207
hwloc_topology_diff_apply_flags_e

Topology differences, 206
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE

Topology differences, 206
hwloc_topology_diff_build

Topology differences, 207
hwloc_topology_diff_destroy

Topology differences, 207
hwloc_topology_diff_export_xml

Topology differences, 207
hwloc_topology_diff_export_xmlbuffer

Topology differences, 208
hwloc_topology_diff_load_xml

Topology differences, 208
hwloc_topology_diff_load xmlbuffer

Topology differences, 208
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR

Topology differences, 206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO

Topology differences, 206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME

Topology differences, 206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

Topology differences, 206
hwloc_topology_diff_obj_attr_type_e

Topology differences, 206
hwloc_topology_diff_obj_attr_type_t

Topology differences, 205

Generated by Doxygen

INDEX 263

hwloc_topology_diff_obj_attr_u, 244 Exporting Topologies to Synthetic, 166
generic, 244 HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMOR
string, 244 Exporting Topologies to Synthetic, 166
uint64, 244 HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr gEmpdctirsg Topologies to Synthetic, 166
242 HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_
type, 242 Exporting Topologies to Synthetic, 166
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff obj_d#WkiGg TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1
243 Exporting Topologies to Synthetic, 166
name, 243 hwloc_topology_export_synthetic_flags_e
newvalue, 243 Exporting Topologies to Synthetic, 166
oldvalue, 243 hwloc_topology_export_xml
type, 244 Exporting Topologies to XML, 164
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_d#WL@@4TOPOLOGY_EXPORT_XML_FLAG_V1
244 Exporting Topologies to XML, 163
index, 245 hwloc_topology_export_xml_flags_e
newvalue, 245 Exporting Topologies to XML, 163
oldvalue, 245 hwloc_topology_export_xmlbuffer
type, 245 Exporting Topologies to XML, 164
hwloc_topology_diff t HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING
Topology differences, 205 Topology Detection Configuration and Query, 123
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
Topology differences, 206 Topology Detection Configuration and Query, 122
hwloc_topology_diff type_e HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED
Topology differences, 206 Topology Detection Configuration and Query, 121
hwloc_topology_diff_type_t HWLOC _TOPOLOGY_FLAG_IS THISSYSTEM
Topology differences, 206 Topology Detection Configuration and Query, 121
hwloc_topology_diff_u, 246 HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS
generic, 246 Topology Detection Configuration and Query, 124
obj_attr, 246 HWLOC_TOPOLOGY_FLAG_NO_DISTANCES
too_complex, 246 Topology Detection Configuration and Query, 123
hwloc_topology_diff_u::hwloc_topology_diff_generic_s, HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS
242 Topology Detection Configuration and Query, 124
next, 242 HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING
type, 242 Topology Detection Configuration and Query, 123
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr s, HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING
242 Topology Detection Configuration and Query, 123
diff, 243 HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES
next, 243 Topology Detection Configuration and Query, 122
obj_depth, 243 hwloc_topology_flags_e
obj_index, 243 Topology Detection Configuration and Query, 120
type, 243 hwloc_topology_free_group_object
hwloc_topology_diff_u::hwloc_topology_diff too_complex_s, Modifying a loaded Topology, 130
245 hwloc_topology_get_allowed_cpuset
next, 245 CPU and node sets of entire topologies, 146
obj_depth, 245 hwloc_topology_get_allowed_nodeset
obj_index, 245 CPU and node sets of entire topologies, 146
type, 245 hwloc_topology_get_complete_cpuset
hwloc_topology_discovery_support, 246 CPU and node sets of entire topologies, 146
cpukind_efficiency, 247 hwloc_topology_get_complete_nodeset
disallowed_numa, 247 CPU and node sets of entire topologies, 147
disallowed_pu, 247 hwloc_topology_get_default_nodeset
numa, 247 Comparing memory node attributes for finding
numa_memory, 247 where to allocate on, 182
pu, 247 hwloc_topology_get_depth
hwloc_topology_dup Object levels, depths and types, 101
Topology Creation and Destruction, 96 hwloc_topology_get_flags
hwloc_topology_export_synthetic Topology Detection Configuration and Query, 124

Generated by Doxygen

264

INDEX

hwloc_topology_get_support

Topology Detection Configuration and Query, 125
hwloc_topology_get_topology_cpuset

CPU and node sets of entire topologies, 147
hwloc_topology_get_topology_nodeset

CPU and node sets of entire topologies, 147
hwloc_topology_get_type_filter

Topology Detection Configuration and Query, 125
hwloc_topology_get_userdata

Topology Detection Configuration and Query, 125
hwloc_topology_init

Topology Creation and Destruction, 97
hwloc_topology_insert_group_object

Modifying a loaded Topology, 130
hwloc_topology_insert_misc_object

Modifying a loaded Topology, 131
hwloc_topology_is_thissystem

Topology Detection Configuration and Query, 125
hwloc_topology_load

Topology Creation and Destruction, 97
hwloc_topology_membind_support, 247

alloc_membind, 248

bind_membind, 248

firsttouch_membind, 248

get_area_membind, 248

get_area_memlocation, 248

get_proc_membind, 248

get_thisproc_membind, 248

get_thisthread_membind, 248

interleave_membind, 248

migrate_membind, 248

nexttouch_membind, 248

set_area_membind, 249

set_proc_membind, 249

set_thisproc_membind, 249

set_thisthread_membind, 249

weighted_interleave_membind, 249
hwloc_topology_misc_support, 249

imported_support, 249
hwloc_topology_reconnect

Components and Plugins: Core functions to be

used by components, 215

hwloc_topology_refresh

Modifying a loaded Topology, 131
hwloc_topology_restrict

Modifying a loaded Topology, 132
hwloc_topology_set_all_types_filter

Topology Detection Configuration and Query, 126
hwloc_topology_set_cache_types_filter

Topology Detection Configuration and Query, 126
hwloc_topology_set_components

Changing the Source of Topology Discovery, 117
hwloc_topology_set_flags

Topology Detection Configuration and Query, 126
hwloc_topology_set_icache_types_filter

Topology Detection Configuration and Query, 126
hwloc_topology_set_io_types_filter

Topology Detection Configuration and Query, 127

hwloc_topology_set_pid

Changing the Source of Topology Discovery, 117
hwloc_topology_set_synthetic

Changing the Source of Topology Discovery, 118
hwloc_topology_set_type_filter

Topology Detection Configuration and Query, 127
hwloc_topology_set userdata

Topology Detection Configuration and Query, 127
hwloc_topology_set userdata_export_callback

Exporting Topologies to XML, 165
hwloc_topology_set_userdata_import_callback

Exporting Topologies to XML, 165
hwloc_topology_set xml

Changing the Source of Topology Discovery, 118
hwloc_topology_set_xmlbuffer

Changing the Source of Topology Discovery, 119
hwloc_topology_support, 249

cpubind, 250

discovery, 250

membind, 250

misc, 250
hwloc_topology_t

Topology Creation and Destruction, 95
HWLOC_TYPE_DEPTH_BRIDGE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_MEMCACHE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_MISC

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_MULTIPLE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_NUMANODE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_OS_DEVICE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_PCI_DEVICE

Object levels, depths and types, 98
HWLOC_TYPE_DEPTH_UNKNOWN

Object levels, depths and types, 98
hwloc_type_filter_e

Topology Detection Configuration and Query, 124
HWLOC_TYPE_FILTER_KEEP_ALL

Topology Detection Configuration and Query, 124
HWLOC_TYPE_FILTER_KEEP_IMPORTANT

Topology Detection Configuration and Query, 124
HWLOC_TYPE_FILTER_KEEP_NONE

Topology Detection Configuration and Query, 124
HWLOC_TYPE_FILTER_KEEP_STRUCTURE

Topology Detection Configuration and Query, 124
hwloc_type_sscanf

Converting between Object Types and Attributes,

and Strings, 103

hwloc_type_sscanf_as_depth

Converting between Object Types and Attributes,

and Strings, 103

HWLOC_TYPE_UNORDERED

Object Types, 91
hwloc_windows_get_nr_processor_groups

Generated by Doxygen

INDEX

265

Windows-specific helpers, 192
hwloc_windows_get_processor_group_cpuset
Windows-specific helpers, 192

I/0 Devices, 29
imported_support
hwloc_topology_misc_support, 249
Importing and exporting topologies from/to XML files, 51
index

hwloc_cudart_get_device_pci_ids, 197
hwloc_cudart_get_device_pcidev, 197
Interoperability with the NVIDIA Management Library,
198
hwloc_nvml_get_device_cpuset, 198
hwloc_nvml_get_device_osdev, 198
hwloc_nvml_get_device_osdev_by_index, 199
Interoperability with the oneAPI Level Zero interface.,
200

hwloc_topology_diff_obj_attr_u::hwloc_topoIogy_diff_obj_q{%ggigge&ero_get_deviCe_cpuset’ 201

245

infos
hwloc_obj, 235

infos_count
hwloc_obj, 235

init
hwloc_component, 226

Installation, 11

instantiate
hwloc_disc_component, 227

interleave_membind
hwloc_topology_membind_support, 248

Interoperability with glibc sched affinity, 192
hwloc_cpuset_from_glibc_sched_affinity, 192
hwloc_cpuset_to_glibc_sched_affinity, 193

Interoperability with Linux libnuma bitmask, 190
hwloc_cpuset_from_linux_libnuma_bitmask, 190
hwloc_cpuset_to_linux_libnuma_bitmask, 190
hwloc_nodeset_from_linux_libnuma_bitmask, 191
hwloc_nodeset_to_linux_libnuma_bitmask, 191

Interoperability with Linux libnuma unsigned long masks,

188

hwloc_cpuset_from_linux_libnuma_ulongs, 189
hwloc_cpuset_to_linux_libnuma_ulongs, 189
hwloc_nodeset_from_linux_libnuma_ulongs, 189
hwloc_nodeset_to_linux_libnuma_ulongs, 190

Interoperability with OpenCL, 193
hwloc_opencl_get_device_cpuset, 193
hwloc_opencl_get_device_osdev, 194
hwloc_opencl_get_device_osdev_by_index, 194
hwloc_opencl_get_device_pci_busid, 194

Interoperability with OpenFabrics, 203
hwloc_ibv_get_device_cpuset, 204
hwloc_ibv_get_device_osdev, 204
hwloc_ibv_get_device_osdev_by name, 204

Interoperability with OpenGL displays, 202
hwloc_gl_get_display_by osdev, 202
hwloc_gl_get_display_osdev_by name, 203
hwloc_gl_get_display_osdev_by port_device, 203

Interoperability With Other Software, 55

Interoperability with the CUDA Driver API, 195
hwloc_cuda_get_device_cpuset, 195
hwloc_cuda_get_device_osdev, 195
hwloc_cuda_get_device_osdev_by_index, 195
hwloc_cuda_get_device_pci_ids, 196
hwloc_cuda_get_device_pcidev, 196

Interoperability with the CUDA Runtime API, 196
hwloc_cudart_get_device_cpuset, 197
hwloc_cudart_get_device_osdev_by_index, 197

hwloc_levelzero_get_device_osdev, 201
hwloc_levelzero_get_sysman_device_cpuset, 201
hwloc_levelzero_get_sysman_device_osdev, 202
Interoperability with the ROCm SMI Management Li-
brary, 199
hwloc_rsmi_get_device_cpuset, 199
hwloc_rsmi_get_device_osdev, 200
hwloc_rsmi_get_device_osdev_by_index, 200
io_arity
hwloc_obj, 235
io_first_child
hwloc_obj, 235
is_thissystem
hwloc_backend, 222

kind
hwloc_distances_s, 229
hwloc_obj_attr_u::hwloc_group_attr_s, 230

Kinds of CPU cores, 185
hwloc_cpukinds_get_by_cpuset, 185
hwloc_cpukinds_get_info, 186
hwloc_cpukinds_get_nr, 186
hwloc_cpukinds_register, 186

Kinds of object Type, 132
hwloc_obj_type_is_cache, 133
hwloc_obj_type_is_dcache, 133
hwloc_obj_type_is_icache, 133
hwloc_obj_type_is_io, 133
hwloc_obj_type_is_memory, 133
hwloc_obj_type_is_normal, 133

last_child
hwloc_obj, 235
linesize
hwloc_obj_attr_u::hwloc_cache_attr_s, 224
linkspeed
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240
Linux-specific helpers, 187
hwloc_linux_get_tid_cpubind, 187
hwloc_linux_get_tid_last_cpu_location, 187
hwloc_linux_read_path_as_cpumask, 188
hwloc_linux_set_tid_cpubind, 188
local_memory
hwloc_obj_attr_u::hwloc_numanode_attr_s, 232
location
hwloc_location, 231
logical_index
hwloc_obj, 235
Looking at Ancestor and Child Objects, 139

Generated by Doxygen

266

INDEX

hwloc_get_ancestor_obj_by_depth, 139
hwloc_get_ancestor_obj_by_type, 139
hwloc_get_common_ancestor_obj, 140
hwloc_get_next_child, 140
hwloc_obj_is_in_subtree, 140

Looking at Cache Objects, 141
hwloc_get_cache_covering_cpuset, 141
hwloc_get_cache_type_depth, 141
hwloc_get_shared_cache_covering_obj, 141

Managing memory attributes, 183
hwloc_memattr_flag_e, 183
HWLOC_MEMATTR_FLAG_HIGHER_FIRST, 183
HWLOC_MEMATTR_FLAG_LOWER_FIRST, 183
HWLOC_MEMATTR_FLAG_NEED_INITIATOR,

183
hwloc_memattr_get_flags, 183
hwloc_memattr_get_name, 184
hwloc_memattr_register, 184
hwloc_memattr_set value, 184

membind
hwloc_topology_support, 250

Memory binding, 109
hwloc_alloc, 112
hwloc_alloc_membind, 112
hwloc_alloc_membind_policy, 113
hwloc_free, 113
hwloc_get_area_membind, 113
hwloc_get_area_memlocation, 114
hwloc_get_membind, 114
hwloc_get_proc_membind, 115
HWLOC_MEMBIND_BIND, 112
HWLOC_MEMBIND_BYNODESET, 111
HWLOC_MEMBIND_DEFAULT, 111
HWLOC_MEMBIND_FIRSTTOUCH, 111
hwloc_membind_flags_t, 110
HWLOC_MEMBIND_INTERLEAVE, 112
HWLOC_MEMBIND_MIGRATE, 111
HWLOC_MEMBIND_MIXED, 112
HWLOC_MEMBIND_NEXTTOUCH, 112
HWLOC_MEMBIND_NOCPUBIND, 111
hwloc_membind_policy_t, 111
HWLOC_MEMBIND_PROCESS, 111
HWLOC_MEMBIND_STRICT, 111
HWLOC_MEMBIND_THREAD, 111
HWLOC_MEMBIND_WEIGHTED_INTERLEAVE,

112
hwloc_set_area_membind, 115
hwloc_set_membind, 115
hwloc_set_proc_membind, 116

memory_arity
hwloc_obj, 235

memory_first_child
hwloc_obj, 236

migrate_membind
hwloc_topology_membind_support, 248

misc
hwloc_topology_support, 250

misc_arity

hwloc_obj, 236
misc_first_child
hwloc_obj, 236
Miscellaneous objects, 35
Modifying a loaded Topology, 127
HWLOC_ALLOW_FLAG_ALL, 128
HWLOC_ALLOW_FLAG_CUSTOM, 128
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS,
128
hwloc_allow_flags_e, 128
hwloc_obj_add_other_obj_sets, 129
HWLOC_RESTRICT_FLAG_ADAPT_IO, 129
HWLOC_RESTRICT_FLAG_ADAPT_MISC, 129
HWLOC_RESTRICT_FLAG_BYNODESET, 128
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS,
128
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS,
129
hwloc_restrict_flags_e, 128
hwloc_topology_alloc_group_object, 129
hwloc_topology_allow, 129
hwloc_topology_free_group_object, 130
hwloc_topology_insert_group_object, 130
hwloc_topology_insert._misc_object, 131
hwloc_topology_refresh, 131
hwloc_topology_restrict, 132

name
hwloc_disc_component, 227
hwloc_info_s, 230
hwloc_obj, 236

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_

243
nbobjs
hwloc_distances_s, 229
newvalue

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_

243

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64

245
next

hwloc_topology_diff_u::hwloc_topology_diff_generic_s,

242

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,

243

hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,

245
next_cousin
hwloc_obj, 236
next_sibling
hwloc_obj, 236
nexttouch_membind
hwloc_topology_membind_support, 248
nodeset
hwloc_obj, 236
numa
hwloc_topology_discovery_support, 247
numa_memory
hwloc_topology_discovery_support, 247

Generated by Doxygen

INDEX 267

numanode HWLOC_OBJ_CACHE_UNIFIED, 92
hwloc_obj_attr_u, 238 HWLOC_OBJ_CORE, 93
HWLOC_OBJ_DIE, 94
obj_attr HWLOC_OBJ_GROUP, 93
hwloc_topology_diff_u, 246 HWLOC_OBJ_L1CACHE, 93
obj_depth HWLOC_OBJ_L1ICACHE, 93
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s, HWLOC_OBJ_L2CACHE, 93
243 HWLOC_OBJ_L2ICACHE, 93
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_syyLoc oBJ L3C ACHE, 93
245 HWLOC_OBJ_L3ICACHE, 93
obj_index HWLOC_OBJ_L4CACHE, 93
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s, HWLOC_OBJ L5CACHE, 93
243 HWLOC_OBJ_MACHINE, 93
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_syyLoc oBJ MEMC ACHE, 94
_ 245 HWLOC_OBJ_MISC, 94
object HWLOC_OBJ_NUMANODE, 93
hwloc_location::hwloc_location_u, 231 HWLOC_OBJ OS_DEVICE, 94
Object attributes, 37 HWLOC_OBJ_OSDEV_BLOCK, 92
Object levels, depths and types, 97 HWLOC_OBJ_OSDEV_COPROC, 92
hwloc_get_depth_type, 98 HWLOC_OBJ_OSDEV_DMA, 92
hwloc_get_memory_parents_depth, 99 HWLOC_OBJ OSDEV_GPU, 92
hwloc_get_nbobjs_by_depth, 99 HWLOC_OBJ_OSDEV_NETWORK, 92
hwloc_get_nbobjs_by_type, 99 HWLOC_OBJ_OSDEV_OPENFABRICS, 92
hwloc_get_next_obj_by depth, 99 hwloc_obj_osdev_type e, 92
hwloc_get_next_obj_by_type, 99 hwloc_obj osdev_type t, 91
hwloc_get_obj_by_depth, 100 HWLOC_OBJ_PACKAGE, 93
hwloc_get_obj_by_type, 100 HWLOC_OBJ_PCI_DEVICE, 94
hwloc_get_root_obj, 100 HWLOC OBJ_PU, 93
hwloc_get_type_depth, 100 hwloc_obj_type t, 92
hwloc_get_type_depth_e, 98 HWLOC_TYPE_UNORDERED, 91
hwloc_get_type_or_above_depth, 101 objs
hwloc_get_type_or_below_depth, 101 hwloc_distances_s, 229
hwloc_topology_get_depth, 101 oldvalue
HWLOC_TYPE_DEPTH_BRIDGE, 98 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_
HWLOC_TYPE_DEPTH_MEMCACHE, 98 243
HWLOC_TYPE_DEPTH_MISC, 98 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff obj_attr_uint64
HWLOC_TYPE_DEPTH_MULTIPLE, 98 245
HWLOC_TYPE_DEPTH_NUMANODE, 98 os index
HWLOC_TYPE_DEPTH_OS_DEVICE, 98 hwloc_obj, 236
HWLOC_TYPE_DEPTH_PCI_DEVICE, 98 osdev
HWLOC_TYPE_DEPTH_UNKNOWN, 98 hwloc_obj_attr_u, 238
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t), 90
hwloc_const_cpuset_t, 90 page_types
hwloc_const_nodeset_t, 90 hwloc_obj_attr_u::hwloc_numanode_attr_s, 232
hwloc_cpuset_t, 90 page_types_len
hwloc_nodeset_t, 90 hwloc_obj_attr_u::hwloc_numanode_attr_s, 232
Object Structure and Attributes, 95 parent
hwloc_obj_t, 95 hwloc_obj, 237
Object Types, 91 pci
hwloc_compare_types, 94 hwloc_obj_attr_u::hwloc_bridge_attr_s, 223
HWLOC_OBJ_BRIDGE, 93 pci_bus
HWLOC_OBJ_BRIDGE_HOST, 92 hwloc_cl_device_pci_bus_info_khr, 224
HWLOC_OBJ_BRIDGE_PCI, 92 pci_device
hwloc_obj_bridge_type_e, 92 hwloc_cl_device_pci_bus_info_khr, 224
hwloc_obj_bridge_type_t, 91 pci_domain
HWLOC_OBJ_CACHE_DATA, 92 hwloc_cl_device_pci_bus_info_khr, 224
HWLOC_OBJ_CACHE_INSTRUCTION, 92 pci_function
hwloc_obj_cache_type_e, 92 hwloc_cl_device_pci_bus_info_khr, 224
hwloc_obj_cache_type_t, 91 pcidev

Generated by Doxygen

268

INDEX

hwloc_obj_attr_u, 238
pcie
hwloc_cl_device_topology_amd, 225
phase
hwloc_disc_status, 228
phases
hwloc_backend, 222
hwloc_disc_component, 227
prev_cousin
hwloc_obj, 237
prev_sibling
hwloc_obj, 237
priority
hwloc_disc_component, 227
private_data
hwloc_backend, 222
pu
hwloc_topology_discovery_support, 247

raw
hwloc_cl_device_topology_amd, 225

Remove distances between objects, 174
hwloc_distances_release remove, 174
hwloc_distances_remove, 174
hwloc_distances_remove_by depth, 174
hwloc_distances_remove_by_type, 174

Retrieve distances between objects, 167
hwloc_distances_get, 169
hwloc_distances_get_by_depth, 169
hwloc_distances_get_by name, 169
hwloc_distances_get_by_type, 170
hwloc_distances_get _name, 170
hwloc_distances_kind_e, 167
HWLOC_DISTANCES_KIND_FROM_OS, 167
HWLOC_DISTANCES KIND_FROM_USER, 167

hwloc_topology_cpubind_support, 241
set_proc_membind
hwloc_topology_membind_support, 249
set_thisproc_cpubind
hwloc_topology_cpubind_support, 241
set_thisproc_membind
hwloc_topology_membind_support, 249
set_thisthread_cpubind
hwloc_topology_cpubind_support, 241
set_thisthread_membind
hwloc_topology_membind_support, 249
set_thread_cpubind
hwloc_topology_cpubind_support, 241
Sharing topologies between processes, 209
hwloc_shmem_topology_adopt, 209
hwloc_shmem_topology_get_length, 210
hwloc_shmem_topology_write, 210
sibling_rank
hwloc_obj, 237
size

hwloc_obj_attr_u::hwloc_cache_attr_s, 224
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_ty

232
string
hwloc_topology_diff_obj_attr_u, 244
subdevice_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240

subkind

hwloc_obj_attr_u::hwloc_group_attr_s, 230

subordinate_bus

hwloc_obj_attr_u::hwloc_bridge_attr_s, 223

subtype
hwloc_obj, 237
subvendor_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240

HWLOC_DISTANCES_KIND_HETEROGENEOUS_T¥{Rfifietric_subtree

168

hwloc_obj, 237

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTHSynthetic topologies, 53

168
HWLOC_DISTANCES_ KIND_MEANS_ LATENCY,
168
hwloc_distances_release, 170
hwloc_distances_transform, 170
hwloc_distances_transform_e, 168
HWLOC_DISTANCES TRANSFORM_LINKS, 168

Terms and Definitions, 15

The bitmap API, 150
hwloc_bitmap_allbut, 152
hwloc_bitmap_alloc, 152
hwloc_bitmap_alloc_full, 153
hwloc_bitmap_and, 153

HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_P@®Tsitmap_andnot, 153

168

hwloc_bitmap_asprintf, 153

HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL, hwloc_bitmap_clr, 153

168

hwloc_bitmap_clr_range, 153

HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOBWRE., bitmap_compare, 154

169
revision
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240

secondary_bus
hwloc_obj_attr_u::hwloc_bridge_attr_s, 223
set_area_membind
hwloc_topology_membind_support, 249
set_proc_cpubind

hwloc_bitmap_compare_first, 154
hwloc_bitmap_copy, 154
hwloc_bitmap_dup, 154
hwloc_bitmap_fill, 155
hwloc_bitmap_first, 155
hwloc_bitmap_first_unset, 155
hwloc_bitmap_foreach_begin, 152
hwloc_bitmap_foreach_end, 152
hwloc_bitmap_free, 155

Generated by Doxygen

INDEX

269

hwloc_bitmap_from_ith_ulong, 155
hwloc_bitmap_from_ulong, 155
hwloc_bitmap_from_ulongs, 155
hwloc_bitmap_intersects, 156
hwloc_bitmap_isequal, 156
hwloc_bitmap_isfull, 156
hwloc_bitmap_isincluded, 156
hwloc_bitmap_isset, 156
hwloc_bitmap_iszero, 157
hwloc_bitmap_last, 157
hwloc_bitmap_last_unset, 157
hwloc_bitmap_list_asprintf, 157
hwloc_bitmap_list_snprintf, 157
hwloc_bitmap_list_sscanf, 158
hwloc_bitmap_next, 158
hwloc_bitmap_next_unset, 158
hwloc_bitmap_not, 158
hwloc_bitmap_nr_ulongs, 159
hwloc_bitmap_only, 159
hwloc_bitmap_or, 159
hwloc_bitmap_set, 159
hwloc_bitmap_set_ith_ulong, 159
hwloc_bitmap_set_range, 159
hwloc_bitmap_singlify, 160
hwloc_bitmap_snprintf, 160
hwloc_bitmap_sscanf, 160
hwloc_bitmap_t, 152
hwloc_bitmap_taskset_asprintf, 160
hwloc_bitmap_taskset_snprintf, 161
hwloc_bitmap_taskset_sscanf, 161
hwloc_bitmap_to_ith_ulong, 161
hwloc_bitmap_to_ulong, 161
hwloc_bitmap_to_ulongs, 162
hwloc_bitmap_weight, 162
hwloc_bitmap_xor, 162
hwloc_bitmap_zero, 162
hwloc_const_bitmap_t, 152

Thread Safety, 57

too_complex
hwloc_topology_diff_u, 246

Topology Attributes: Distances, Memory Attributes and

CPU Kinds, 43

Topology Creation and Destruction, 95
hwloc_topology_abi_check, 96
hwloc_topology_check, 96
hwloc_topology_destroy, 96
hwloc_topology_dup, 96
hwloc_topology_init, 97
hwloc_topology_load, 97
hwloc_topology_t, 95

Topology Detection Configuration and Query, 119

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM,

HWL:)ZC1_TOPOLOGY_FLAG_NO_CPUKINDS,

HWL2)2('?_TOPOLOGY_FLAG_NO_DISTANC ES,

HWL:)zC?_TOPOLOGY_F LAG_NO_MEMATTRS,
124

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING,

123

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING,

123

HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOUR

122
hwloc_topology_flags_e, 120
hwloc_topology_get_flags, 124
hwloc_topology_get_support, 125
hwloc_topology_get_type_filter, 125
hwloc_topology_get_userdata, 125
hwloc_topology_is_thissystem, 125
hwloc_topology_set_all_types_filter, 126
hwloc_topology_set _cache_types_filter, 126
hwloc_topology_set flags, 126
hwloc_topology_set_icache_types_filter, 126
hwloc_topology_set_io_types_filter, 127
hwloc_topology_set_type_filter, 127
hwloc_topology_set_userdata, 127
hwloc_type_filter_e, 124
HWLOC_TYPE_FILTER_KEEP_ALL, 124
HWLOC_TYPE_FILTER_KEEP_IMPORTANT, 124
HWLOC_TYPE_FILTER_KEEP_NONE, 124
HWLOC_TYPE_FILTER_KEEP_STRUCTURE,

124

Topology differences, 205

hwloc_topology_diff_apply, 207
hwloc_topology_diff_apply_flags_e, 206
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE,
206
hwloc_topology_diff_build, 207
hwloc_topology_diff_destroy, 207
hwloc_topology_diff_export_xml, 207
hwloc_topology_diff_export_xmlbuffer, 208
hwloc_topology_diff_load_xml, 208
hwloc_topology_diff_load_xmibuffer, 208
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, 206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO,
206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME,
206
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE,
206

HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDINGhwloc_topology diff_obj_attr_type_e, 206

123

HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT,

122

HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED,

121

hwloc_topology_diff_obj_attr_type_t, 205

hwloc_topology_diff_t, 205

HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX,
206

hwloc_topology_diff_type_e, 206

hwloc_topology_diff_type_t, 206

Generated by Doxygen

270

INDEX

total_memory
hwloc_obj, 237

type

hwloc_cl_device_topology_amd, 225

hwloc_component, 226

hwloc_location, 231

hwloc_obj, 237

hwloc_obj_attr_u::hwloc_cache_attr_s, 224

hwloc_obj_attr_u::hwloc_osdev_attr_s, 239

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s,
242

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,
244

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s,
245

hwloc_topology_diff_u::hwloc_topology_diff _generic_s,
242

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
243

hwloc_topology_diff_u::hwloc_topology_diff too_complex_s,
245

uinté4

hwloc_topology_diff_obj_attr_u, 244
unused

hwloc_cl_device_topology_amd, 225
Upgrading to the hwloc 2.0 API, 79
upstream

hwloc_obj_attr_u::hwloc_bridge_attr_s, 223
upstream_type

hwloc_obj_attr_u::hwloc_bridge_attr_s, 223
userdata

hwloc_obj, 237

value
hwloc_info_s, 230

values
hwloc_distances_s, 229

vendor_id
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 240

weighted_interleave_membind
hwloc_topology_membind_support, 249
Windows-specific helpers, 191
hwloc_windows_get_nr_processor_groups, 192
hwloc_windows_get_processor_group_cpuset,
192

Generated by Doxygen

	1 Hardware Locality
	1.1 Table of Contents
	1.2 hwloc Overview
	1.3 Command-line Examples
	1.4 Programming Interface
	1.4.1 Portability
	1.4.2 API Example

	1.5 Questions and Bugs
	1.6 History / Credits

	2 Installation
	2.1 Basic Installation
	2.2 Optional Dependencies
	2.3 Installing from a Git clone

	3 Compiling software on top of hwloc's C API
	3.1 Compiling on top of hwloc's C API with GNU Make
	3.2 Compiling on top of hwloc's C API with CMake

	4 Terms and Definitions
	4.1 Objects
	4.2 Indexes and Sets
	4.3 Hierarchy, Tree and Levels

	5 Command-Line Tools
	5.1 lstopo and lstopo-no-graphics
	5.2 hwloc-bind
	5.3 hwloc-calc
	5.4 hwloc-info
	5.5 hwloc-distrib
	5.6 hwloc-ps
	5.7 hwloc-annotate
	5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir
	5.9 hwloc-dump-hwdata
	5.10 hwloc-gather-topology and hwloc-gather-cpuid

	6 Environment Variables
	7 CPU and Memory Binding Overview
	7.1 Binding Policies and Portability
	7.2 Joint CPU and Memory Binding (or not)
	7.3 Current Memory Binding Policy

	8 I/O Devices
	8.1 Enabling and requirements
	8.2 I/O objects
	8.3 OS devices
	8.4 PCI devices and bridges
	8.5 Consulting I/O devices and binding
	8.6 Examples

	9 Miscellaneous objects
	9.1 Misc objects added by hwloc
	9.2 Annotating topologies with Misc objects

	10 Object attributes
	10.1 Normal attributes
	10.2 Custom string infos
	10.2.1 Hardware Platform Information
	10.2.2 Operating System Information
	10.2.3 hwloc Information
	10.2.4 CPU Information
	10.2.5 OS Device Information
	10.2.6 Other Object-specific Information
	10.2.7 User-Given Information

	11 Topology Attributes: Distances, Memory Attributes and CPU Kinds
	11.1 Distances
	11.2 Memory Attributes
	11.3 CPU Kinds

	12 Heterogeneous Memory
	12.1 Memory Tiers and Default nodes
	12.2 Using Heterogeneous Memory from the command-line
	12.3 Using Heterogeneous Memory from the C API
	12.3.1 Iterating over the list of (heterogeneous) NUMA nodes
	12.3.2 Iterating over local (heterogeneous) NUMA nodes

	13 Importing and exporting topologies from/to XML files
	13.1 libxml2 and minimalistic XML backends
	13.2 XML import error management

	14 Synthetic topologies
	14.1 Synthetic description string
	14.2 Loading a synthetic topology
	14.3 Exporting a topology as a synthetic string

	15 Interoperability With Other Software
	16 Thread Safety
	17 Components and plugins
	17.1 Components enabled by default
	17.2 Selecting which components to use
	17.3 Loading components from plugins
	17.4 Existing components and plugins

	18 Embedding hwloc in Other Software
	18.1 Using hwloc's M4 Embedding Capabilities
	18.2 Example Embedding hwloc

	19 Frequently Asked Questions (FAQ)
	19.1 Concepts
	19.1.1 I only need binding, or the number of cores, why should I use hwloc ?
	19.1.2 What may I disable to make hwloc faster?
	19.1.3 Should I use logical or physical/OS indexes? and how?
	19.1.4 hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.?
	19.1.5 hwloc only has a one-dimensional view of the architecture, it ignores distances?
	19.1.6 What are these Group objects in my topology?
	19.1.7 What happens if my topology is asymmetric?
	19.1.8 What happens to my topology if I disable symmetric multithreading, hyper-threading, etc. in the system?
	19.1.9 How may I ignore symmetric multithreading, hyper-threading, etc. in hwloc?

	19.2 Advanced
	19.2.1 I do not want hwloc to rediscover my enormous machine topology every time I rerun a process
	19.2.2 How many topologies may I use in my program?
	19.2.3 How to avoid memory waste when manipulating multiple similar topologies?
	19.2.4 How do I annotate the topology with private notes?
	19.2.5 How do I create a custom heterogeneous and asymmetric topology?

	19.3 Caveats
	19.3.1 Why is lstopo slow?
	19.3.2 Does hwloc require privileged access?
	19.3.3 What should I do when hwloc reports "operating system" warnings?
	19.3.4 Why does Valgrind complain about hwloc memory leaks?

	19.4 Platform-specific
	19.4.1 How do I enable ROCm SMI and select which version to use?
	19.4.2 How do I enable CUDA and select which CUDA version to use?
	19.4.3 How do I find the local MCDRAM NUMA node on Intel Xeon Phi processor?
	19.4.4 Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?
	19.4.5 How do I build hwloc for BlueGene/Q?
	19.4.6 How do I build hwloc for Windows?
	19.4.7 How to get useful topology information on NetBSD?
	19.4.8 Why does binding fail on AIX?

	19.5 Compatibility between hwloc versions
	19.5.1 How do I handle API changes?
	19.5.2 What is the difference between API and library version numbers?
	19.5.3 How do I handle ABI breaks?
	19.5.4 Are XML topology files compatible between hwloc releases?
	19.5.5 Are synthetic strings compatible between hwloc releases?
	19.5.6 Is it possible to share a shared-memory topology between different hwloc releases?

	20 Upgrading to the hwloc 2.0 API
	20.1 New Organization of NUMA nodes and Memory
	20.1.1 Memory children
	20.1.2 Examples
	20.1.3 NUMA level and depth
	20.1.4 Finding Local NUMA nodes and looking at Children and Parents

	20.2 4 Kinds of Objects and Children
	20.2.1 I/O and Misc children
	20.2.2 Kinds of objects

	20.3 HWLOC_OBJ_CACHE replaced
	20.4 allowed_cpuset and allowed_nodeset only in the main topology
	20.5 Object depths are now signed int
	20.6 Memory attributes become NUMANode-specific
	20.7 Topology configuration changes
	20.8 XML changes
	20.9 Distances API totally rewritten
	20.10 Return values of functions
	20.11 Misc API changes
	20.12 API removals and deprecations

	21 Topic Index
	21.1 Topics

	22 Data Structure Index
	22.1 Data Structures

	23 Topic Documentation
	23.1 Error reporting in the API
	23.2 API version
	23.2.1 Detailed Description
	23.2.2 Macro Definition Documentation
	23.2.2.1 HWLOC_API_VERSION
	23.2.2.2 HWLOC_COMPONENT_ABI

	23.2.3 Function Documentation
	23.2.3.1 hwloc_get_api_version()

	23.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
	23.3.1 Detailed Description
	23.3.2 Typedef Documentation
	23.3.2.1 hwloc_const_cpuset_t
	23.3.2.2 hwloc_const_nodeset_t
	23.3.2.3 hwloc_cpuset_t
	23.3.2.4 hwloc_nodeset_t

	23.4 Object Types
	23.4.1 Detailed Description
	23.4.2 Macro Definition Documentation
	23.4.2.1 HWLOC_TYPE_UNORDERED

	23.4.3 Typedef Documentation
	23.4.3.1 hwloc_obj_bridge_type_t
	23.4.3.2 hwloc_obj_cache_type_t
	23.4.3.3 hwloc_obj_osdev_type_t

	23.4.4 Enumeration Type Documentation
	23.4.4.1 hwloc_obj_bridge_type_e
	23.4.4.2 hwloc_obj_cache_type_e
	23.4.4.3 hwloc_obj_osdev_type_e
	23.4.4.4 hwloc_obj_type_t

	23.4.5 Function Documentation
	23.4.5.1 hwloc_compare_types()

	23.5 Object Structure and Attributes
	23.5.1 Detailed Description
	23.5.2 Typedef Documentation
	23.5.2.1 hwloc_obj_t

	23.6 Topology Creation and Destruction
	23.6.1 Detailed Description
	23.6.2 Typedef Documentation
	23.6.2.1 hwloc_topology_t

	23.6.3 Function Documentation
	23.6.3.1 hwloc_topology_abi_check()
	23.6.3.2 hwloc_topology_check()
	23.6.3.3 hwloc_topology_destroy()
	23.6.3.4 hwloc_topology_dup()
	23.6.3.5 hwloc_topology_init()
	23.6.3.6 hwloc_topology_load()

	23.7 Object levels, depths and types
	23.7.1 Detailed Description
	23.7.2 Enumeration Type Documentation
	23.7.2.1 hwloc_get_type_depth_e

	23.7.3 Function Documentation
	23.7.3.1 hwloc_get_depth_type()
	23.7.3.2 hwloc_get_memory_parents_depth()
	23.7.3.3 hwloc_get_nbobjs_by_depth()
	23.7.3.4 hwloc_get_nbobjs_by_type()
	23.7.3.5 hwloc_get_next_obj_by_depth()
	23.7.3.6 hwloc_get_next_obj_by_type()
	23.7.3.7 hwloc_get_obj_by_depth()
	23.7.3.8 hwloc_get_obj_by_type()
	23.7.3.9 hwloc_get_root_obj()
	23.7.3.10 hwloc_get_type_depth()
	23.7.3.11 hwloc_get_type_or_above_depth()
	23.7.3.12 hwloc_get_type_or_below_depth()
	23.7.3.13 hwloc_topology_get_depth()

	23.8 Converting between Object Types and Attributes, and Strings
	23.8.1 Detailed Description
	23.8.2 Function Documentation
	23.8.2.1 hwloc_obj_attr_snprintf()
	23.8.2.2 hwloc_obj_type_snprintf()
	23.8.2.3 hwloc_obj_type_string()
	23.8.2.4 hwloc_type_sscanf()
	23.8.2.5 hwloc_type_sscanf_as_depth()

	23.9 Consulting and Adding Info Attributes
	23.9.1 Detailed Description
	23.9.2 Function Documentation
	23.9.2.1 hwloc_obj_add_info()
	23.9.2.2 hwloc_obj_get_info_by_name()
	23.9.2.3 hwloc_obj_set_subtype()

	23.10 CPU binding
	23.10.1 Detailed Description
	23.10.2 Enumeration Type Documentation
	23.10.2.1 hwloc_cpubind_flags_t

	23.10.3 Function Documentation
	23.10.3.1 hwloc_get_cpubind()
	23.10.3.2 hwloc_get_last_cpu_location()
	23.10.3.3 hwloc_get_proc_cpubind()
	23.10.3.4 hwloc_get_proc_last_cpu_location()
	23.10.3.5 hwloc_get_thread_cpubind()
	23.10.3.6 hwloc_set_cpubind()
	23.10.3.7 hwloc_set_proc_cpubind()
	23.10.3.8 hwloc_set_thread_cpubind()

	23.11 Memory binding
	23.11.1 Detailed Description
	23.11.2 Enumeration Type Documentation
	23.11.2.1 hwloc_membind_flags_t
	23.11.2.2 hwloc_membind_policy_t

	23.11.3 Function Documentation
	23.11.3.1 hwloc_alloc()
	23.11.3.2 hwloc_alloc_membind()
	23.11.3.3 hwloc_alloc_membind_policy()
	23.11.3.4 hwloc_free()
	23.11.3.5 hwloc_get_area_membind()
	23.11.3.6 hwloc_get_area_memlocation()
	23.11.3.7 hwloc_get_membind()
	23.11.3.8 hwloc_get_proc_membind()
	23.11.3.9 hwloc_set_area_membind()
	23.11.3.10 hwloc_set_membind()
	23.11.3.11 hwloc_set_proc_membind()

	23.12 Changing the Source of Topology Discovery
	23.12.1 Detailed Description
	23.12.2 Enumeration Type Documentation
	23.12.2.1 hwloc_topology_components_flag_e

	23.12.3 Function Documentation
	23.12.3.1 hwloc_topology_set_components()
	23.12.3.2 hwloc_topology_set_pid()
	23.12.3.3 hwloc_topology_set_synthetic()
	23.12.3.4 hwloc_topology_set_xml()
	23.12.3.5 hwloc_topology_set_xmlbuffer()

	23.13 Topology Detection Configuration and Query
	23.13.1 Detailed Description
	23.13.2 Enumeration Type Documentation
	23.13.2.1 hwloc_topology_flags_e
	23.13.2.2 hwloc_type_filter_e

	23.13.3 Function Documentation
	23.13.3.1 hwloc_topology_get_flags()
	23.13.3.2 hwloc_topology_get_support()
	23.13.3.3 hwloc_topology_get_type_filter()
	23.13.3.4 hwloc_topology_get_userdata()
	23.13.3.5 hwloc_topology_is_thissystem()
	23.13.3.6 hwloc_topology_set_all_types_filter()
	23.13.3.7 hwloc_topology_set_cache_types_filter()
	23.13.3.8 hwloc_topology_set_flags()
	23.13.3.9 hwloc_topology_set_icache_types_filter()
	23.13.3.10 hwloc_topology_set_io_types_filter()
	23.13.3.11 hwloc_topology_set_type_filter()
	23.13.3.12 hwloc_topology_set_userdata()

	23.14 Modifying a loaded Topology
	23.14.1 Detailed Description
	23.14.2 Enumeration Type Documentation
	23.14.2.1 hwloc_allow_flags_e
	23.14.2.2 hwloc_restrict_flags_e

	23.14.3 Function Documentation
	23.14.3.1 hwloc_obj_add_other_obj_sets()
	23.14.3.2 hwloc_topology_alloc_group_object()
	23.14.3.3 hwloc_topology_allow()
	23.14.3.4 hwloc_topology_free_group_object()
	23.14.3.5 hwloc_topology_insert_group_object()
	23.14.3.6 hwloc_topology_insert_misc_object()
	23.14.3.7 hwloc_topology_refresh()
	23.14.3.8 hwloc_topology_restrict()

	23.15 Kinds of object Type
	23.15.1 Detailed Description
	23.15.2 Function Documentation
	23.15.2.1 hwloc_obj_type_is_cache()
	23.15.2.2 hwloc_obj_type_is_dcache()
	23.15.2.3 hwloc_obj_type_is_icache()
	23.15.2.4 hwloc_obj_type_is_io()
	23.15.2.5 hwloc_obj_type_is_memory()
	23.15.2.6 hwloc_obj_type_is_normal()

	23.16 Finding Objects inside a CPU set
	23.16.1 Detailed Description
	23.16.2 Function Documentation
	23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()
	23.16.2.2 hwloc_get_largest_objs_inside_cpuset()
	23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()
	23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type()
	23.16.2.5 hwloc_get_next_obj_inside_cpuset_by_depth()
	23.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type()
	23.16.2.7 hwloc_get_obj_index_inside_cpuset()
	23.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()
	23.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

	23.17 Finding Objects covering at least CPU set
	23.17.1 Detailed Description
	23.17.2 Function Documentation
	23.17.2.1 hwloc_get_child_covering_cpuset()
	23.17.2.2 hwloc_get_next_obj_covering_cpuset_by_depth()
	23.17.2.3 hwloc_get_next_obj_covering_cpuset_by_type()
	23.17.2.4 hwloc_get_obj_covering_cpuset()

	23.18 Looking at Ancestor and Child Objects
	23.18.1 Detailed Description
	23.18.2 Function Documentation
	23.18.2.1 hwloc_get_ancestor_obj_by_depth()
	23.18.2.2 hwloc_get_ancestor_obj_by_type()
	23.18.2.3 hwloc_get_common_ancestor_obj()
	23.18.2.4 hwloc_get_next_child()
	23.18.2.5 hwloc_obj_is_in_subtree()

	23.19 Looking at Cache Objects
	23.19.1 Detailed Description
	23.19.2 Function Documentation
	23.19.2.1 hwloc_get_cache_covering_cpuset()
	23.19.2.2 hwloc_get_cache_type_depth()
	23.19.2.3 hwloc_get_shared_cache_covering_obj()

	23.20 Finding objects, miscellaneous helpers
	23.20.1 Detailed Description
	23.20.2 Function Documentation
	23.20.2.1 hwloc_bitmap_singlify_per_core()
	23.20.2.2 hwloc_get_closest_objs()
	23.20.2.3 hwloc_get_numanode_obj_by_os_index()
	23.20.2.4 hwloc_get_obj_below_array_by_type()
	23.20.2.5 hwloc_get_obj_below_by_type()
	23.20.2.6 hwloc_get_obj_with_same_locality()
	23.20.2.7 hwloc_get_pu_obj_by_os_index()

	23.21 Distributing items over a topology
	23.21.1 Detailed Description
	23.21.2 Enumeration Type Documentation
	23.21.2.1 hwloc_distrib_flags_e

	23.21.3 Function Documentation
	23.21.3.1 hwloc_distrib()

	23.22 CPU and node sets of entire topologies
	23.22.1 Detailed Description
	23.22.2 Function Documentation
	23.22.2.1 hwloc_topology_get_allowed_cpuset()
	23.22.2.2 hwloc_topology_get_allowed_nodeset()
	23.22.2.3 hwloc_topology_get_complete_cpuset()
	23.22.2.4 hwloc_topology_get_complete_nodeset()
	23.22.2.5 hwloc_topology_get_topology_cpuset()
	23.22.2.6 hwloc_topology_get_topology_nodeset()

	23.23 Converting between CPU sets and node sets
	23.23.1 Detailed Description
	23.23.2 Function Documentation
	23.23.2.1 hwloc_cpuset_from_nodeset()
	23.23.2.2 hwloc_cpuset_to_nodeset()

	23.24 Finding I/O objects
	23.24.1 Detailed Description
	23.24.2 Function Documentation
	23.24.2.1 hwloc_bridge_covers_pcibus()
	23.24.2.2 hwloc_get_next_bridge()
	23.24.2.3 hwloc_get_next_osdev()
	23.24.2.4 hwloc_get_next_pcidev()
	23.24.2.5 hwloc_get_non_io_ancestor_obj()
	23.24.2.6 hwloc_get_pcidev_by_busid()
	23.24.2.7 hwloc_get_pcidev_by_busidstring()

	23.25 The bitmap API
	23.25.1 Detailed Description
	23.25.2 Macro Definition Documentation
	23.25.2.1 hwloc_bitmap_foreach_begin
	23.25.2.2 hwloc_bitmap_foreach_end

	23.25.3 Typedef Documentation
	23.25.3.1 hwloc_bitmap_t
	23.25.3.2 hwloc_const_bitmap_t

	23.25.4 Function Documentation
	23.25.4.1 hwloc_bitmap_allbut()
	23.25.4.2 hwloc_bitmap_alloc()
	23.25.4.3 hwloc_bitmap_alloc_full()
	23.25.4.4 hwloc_bitmap_and()
	23.25.4.5 hwloc_bitmap_andnot()
	23.25.4.6 hwloc_bitmap_asprintf()
	23.25.4.7 hwloc_bitmap_clr()
	23.25.4.8 hwloc_bitmap_clr_range()
	23.25.4.9 hwloc_bitmap_compare()
	23.25.4.10 hwloc_bitmap_compare_first()
	23.25.4.11 hwloc_bitmap_copy()
	23.25.4.12 hwloc_bitmap_dup()
	23.25.4.13 hwloc_bitmap_fill()
	23.25.4.14 hwloc_bitmap_first()
	23.25.4.15 hwloc_bitmap_first_unset()
	23.25.4.16 hwloc_bitmap_free()
	23.25.4.17 hwloc_bitmap_from_ith_ulong()
	23.25.4.18 hwloc_bitmap_from_ulong()
	23.25.4.19 hwloc_bitmap_from_ulongs()
	23.25.4.20 hwloc_bitmap_intersects()
	23.25.4.21 hwloc_bitmap_isequal()
	23.25.4.22 hwloc_bitmap_isfull()
	23.25.4.23 hwloc_bitmap_isincluded()
	23.25.4.24 hwloc_bitmap_isset()
	23.25.4.25 hwloc_bitmap_iszero()
	23.25.4.26 hwloc_bitmap_last()
	23.25.4.27 hwloc_bitmap_last_unset()
	23.25.4.28 hwloc_bitmap_list_asprintf()
	23.25.4.29 hwloc_bitmap_list_snprintf()
	23.25.4.30 hwloc_bitmap_list_sscanf()
	23.25.4.31 hwloc_bitmap_next()
	23.25.4.32 hwloc_bitmap_next_unset()
	23.25.4.33 hwloc_bitmap_not()
	23.25.4.34 hwloc_bitmap_nr_ulongs()
	23.25.4.35 hwloc_bitmap_only()
	23.25.4.36 hwloc_bitmap_or()
	23.25.4.37 hwloc_bitmap_set()
	23.25.4.38 hwloc_bitmap_set_ith_ulong()
	23.25.4.39 hwloc_bitmap_set_range()
	23.25.4.40 hwloc_bitmap_singlify()
	23.25.4.41 hwloc_bitmap_snprintf()
	23.25.4.42 hwloc_bitmap_sscanf()
	23.25.4.43 hwloc_bitmap_taskset_asprintf()
	23.25.4.44 hwloc_bitmap_taskset_snprintf()
	23.25.4.45 hwloc_bitmap_taskset_sscanf()
	23.25.4.46 hwloc_bitmap_to_ith_ulong()
	23.25.4.47 hwloc_bitmap_to_ulong()
	23.25.4.48 hwloc_bitmap_to_ulongs()
	23.25.4.49 hwloc_bitmap_weight()
	23.25.4.50 hwloc_bitmap_xor()
	23.25.4.51 hwloc_bitmap_zero()

	23.26 Exporting Topologies to XML
	23.26.1 Detailed Description
	23.26.2 Enumeration Type Documentation
	23.26.2.1 hwloc_topology_export_xml_flags_e

	23.26.3 Function Documentation
	23.26.3.1 hwloc_export_obj_userdata()
	23.26.3.2 hwloc_export_obj_userdata_base64()
	23.26.3.3 hwloc_free_xmlbuffer()
	23.26.3.4 hwloc_topology_export_xml()
	23.26.3.5 hwloc_topology_export_xmlbuffer()
	23.26.3.6 hwloc_topology_set_userdata_export_callback()
	23.26.3.7 hwloc_topology_set_userdata_import_callback()

	23.27 Exporting Topologies to Synthetic
	23.27.1 Detailed Description
	23.27.2 Enumeration Type Documentation
	23.27.2.1 hwloc_topology_export_synthetic_flags_e

	23.27.3 Function Documentation
	23.27.3.1 hwloc_topology_export_synthetic()

	23.28 Retrieve distances between objects
	23.28.1 Detailed Description
	23.28.2 Enumeration Type Documentation
	23.28.2.1 hwloc_distances_kind_e
	23.28.2.2 hwloc_distances_transform_e

	23.28.3 Function Documentation
	23.28.3.1 hwloc_distances_get()
	23.28.3.2 hwloc_distances_get_by_depth()
	23.28.3.3 hwloc_distances_get_by_name()
	23.28.3.4 hwloc_distances_get_by_type()
	23.28.3.5 hwloc_distances_get_name()
	23.28.3.6 hwloc_distances_release()
	23.28.3.7 hwloc_distances_transform()

	23.29 Helpers for consulting distance matrices
	23.29.1 Detailed Description
	23.29.2 Function Documentation
	23.29.2.1 hwloc_distances_obj_index()
	23.29.2.2 hwloc_distances_obj_pair_values()

	23.30 Add distances between objects
	23.30.1 Detailed Description
	23.30.2 Typedef Documentation
	23.30.2.1 hwloc_distances_add_handle_t

	23.30.3 Enumeration Type Documentation
	23.30.3.1 hwloc_distances_add_flag_e

	23.30.4 Function Documentation
	23.30.4.1 hwloc_distances_add_commit()
	23.30.4.2 hwloc_distances_add_create()
	23.30.4.3 hwloc_distances_add_values()

	23.31 Remove distances between objects
	23.31.1 Detailed Description
	23.31.2 Function Documentation
	23.31.2.1 hwloc_distances_release_remove()
	23.31.2.2 hwloc_distances_remove()
	23.31.2.3 hwloc_distances_remove_by_depth()
	23.31.2.4 hwloc_distances_remove_by_type()

	23.32 Comparing memory node attributes for finding where to allocate on
	23.32.1 Detailed Description
	23.32.2 Typedef Documentation
	23.32.2.1 hwloc_memattr_id_t

	23.32.3 Enumeration Type Documentation
	23.32.3.1 hwloc_local_numanode_flag_e
	23.32.3.2 hwloc_location_type_e
	23.32.3.3 hwloc_memattr_id_e

	23.32.4 Function Documentation
	23.32.4.1 hwloc_get_local_numanode_objs()
	23.32.4.2 hwloc_memattr_get_best_initiator()
	23.32.4.3 hwloc_memattr_get_best_target()
	23.32.4.4 hwloc_memattr_get_by_name()
	23.32.4.5 hwloc_memattr_get_initiators()
	23.32.4.6 hwloc_memattr_get_targets()
	23.32.4.7 hwloc_memattr_get_value()
	23.32.4.8 hwloc_topology_get_default_nodeset()

	23.33 Managing memory attributes
	23.33.1 Detailed Description
	23.33.2 Enumeration Type Documentation
	23.33.2.1 hwloc_memattr_flag_e

	23.33.3 Function Documentation
	23.33.3.1 hwloc_memattr_get_flags()
	23.33.3.2 hwloc_memattr_get_name()
	23.33.3.3 hwloc_memattr_register()
	23.33.3.4 hwloc_memattr_set_value()

	23.34 Kinds of CPU cores
	23.34.1 Detailed Description
	23.34.2 Function Documentation
	23.34.2.1 hwloc_cpukinds_get_by_cpuset()
	23.34.2.2 hwloc_cpukinds_get_info()
	23.34.2.3 hwloc_cpukinds_get_nr()
	23.34.2.4 hwloc_cpukinds_register()

	23.35 Linux-specific helpers
	23.35.1 Detailed Description
	23.35.2 Function Documentation
	23.35.2.1 hwloc_linux_get_tid_cpubind()
	23.35.2.2 hwloc_linux_get_tid_last_cpu_location()
	23.35.2.3 hwloc_linux_read_path_as_cpumask()
	23.35.2.4 hwloc_linux_set_tid_cpubind()

	23.36 Interoperability with Linux libnuma unsigned long masks
	23.36.1 Detailed Description
	23.36.2 Function Documentation
	23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()
	23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()
	23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()
	23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

	23.37 Interoperability with Linux libnuma bitmask
	23.37.1 Detailed Description
	23.37.2 Function Documentation
	23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()
	23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()
	23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()
	23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

	23.38 Windows-specific helpers
	23.38.1 Detailed Description
	23.38.2 Function Documentation
	23.38.2.1 hwloc_windows_get_nr_processor_groups()
	23.38.2.2 hwloc_windows_get_processor_group_cpuset()

	23.39 Interoperability with glibc sched affinity
	23.39.1 Detailed Description
	23.39.2 Function Documentation
	23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()
	23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

	23.40 Interoperability with OpenCL
	23.40.1 Detailed Description
	23.40.2 Function Documentation
	23.40.2.1 hwloc_opencl_get_device_cpuset()
	23.40.2.2 hwloc_opencl_get_device_osdev()
	23.40.2.3 hwloc_opencl_get_device_osdev_by_index()
	23.40.2.4 hwloc_opencl_get_device_pci_busid()

	23.41 Interoperability with the CUDA Driver API
	23.41.1 Detailed Description
	23.41.2 Function Documentation
	23.41.2.1 hwloc_cuda_get_device_cpuset()
	23.41.2.2 hwloc_cuda_get_device_osdev()
	23.41.2.3 hwloc_cuda_get_device_osdev_by_index()
	23.41.2.4 hwloc_cuda_get_device_pci_ids()
	23.41.2.5 hwloc_cuda_get_device_pcidev()

	23.42 Interoperability with the CUDA Runtime API
	23.42.1 Detailed Description
	23.42.2 Function Documentation
	23.42.2.1 hwloc_cudart_get_device_cpuset()
	23.42.2.2 hwloc_cudart_get_device_osdev_by_index()
	23.42.2.3 hwloc_cudart_get_device_pci_ids()
	23.42.2.4 hwloc_cudart_get_device_pcidev()

	23.43 Interoperability with the NVIDIA Management Library
	23.43.1 Detailed Description
	23.43.2 Function Documentation
	23.43.2.1 hwloc_nvml_get_device_cpuset()
	23.43.2.2 hwloc_nvml_get_device_osdev()
	23.43.2.3 hwloc_nvml_get_device_osdev_by_index()

	23.44 Interoperability with the ROCm SMI Management Library
	23.44.1 Detailed Description
	23.44.2 Function Documentation
	23.44.2.1 hwloc_rsmi_get_device_cpuset()
	23.44.2.2 hwloc_rsmi_get_device_osdev()
	23.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

	23.45 Interoperability with the oneAPI Level Zero interface.
	23.45.1 Detailed Description
	23.45.2 Function Documentation
	23.45.2.1 hwloc_levelzero_get_device_cpuset()
	23.45.2.2 hwloc_levelzero_get_device_osdev()
	23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()
	23.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

	23.46 Interoperability with OpenGL displays
	23.46.1 Detailed Description
	23.46.2 Function Documentation
	23.46.2.1 hwloc_gl_get_display_by_osdev()
	23.46.2.2 hwloc_gl_get_display_osdev_by_name()
	23.46.2.3 hwloc_gl_get_display_osdev_by_port_device()

	23.47 Interoperability with OpenFabrics
	23.47.1 Detailed Description
	23.47.2 Function Documentation
	23.47.2.1 hwloc_ibv_get_device_cpuset()
	23.47.2.2 hwloc_ibv_get_device_osdev()
	23.47.2.3 hwloc_ibv_get_device_osdev_by_name()

	23.48 Topology differences
	23.48.1 Detailed Description
	23.48.2 Typedef Documentation
	23.48.2.1 hwloc_topology_diff_obj_attr_type_t
	23.48.2.2 hwloc_topology_diff_t
	23.48.2.3 hwloc_topology_diff_type_t

	23.48.3 Enumeration Type Documentation
	23.48.3.1 hwloc_topology_diff_apply_flags_e
	23.48.3.2 hwloc_topology_diff_obj_attr_type_e
	23.48.3.3 hwloc_topology_diff_type_e

	23.48.4 Function Documentation
	23.48.4.1 hwloc_topology_diff_apply()
	23.48.4.2 hwloc_topology_diff_build()
	23.48.4.3 hwloc_topology_diff_destroy()
	23.48.4.4 hwloc_topology_diff_export_xml()
	23.48.4.5 hwloc_topology_diff_export_xmlbuffer()
	23.48.4.6 hwloc_topology_diff_load_xml()
	23.48.4.7 hwloc_topology_diff_load_xmlbuffer()

	23.49 Sharing topologies between processes
	23.49.1 Detailed Description
	23.49.2 Function Documentation
	23.49.2.1 hwloc_shmem_topology_adopt()
	23.49.2.2 hwloc_shmem_topology_get_length()
	23.49.2.3 hwloc_shmem_topology_write()

	23.50 Components and Plugins: Discovery components and backends
	23.50.1 Detailed Description
	23.50.2 Typedef Documentation
	23.50.2.1 hwloc_disc_phase_t

	23.50.3 Enumeration Type Documentation
	23.50.3.1 hwloc_disc_phase_e
	23.50.3.2 hwloc_disc_status_flag_e

	23.50.4 Function Documentation
	23.50.4.1 hwloc_backend_alloc()
	23.50.4.2 hwloc_backend_enable()

	23.51 Components and Plugins: Generic components
	23.51.1 Detailed Description
	23.51.2 Typedef Documentation
	23.51.2.1 hwloc_component_type_t

	23.51.3 Enumeration Type Documentation
	23.51.3.1 hwloc_component_type_e

	23.51.4 Function Documentation
	23.51.4.1 hwloc_plugin_check_namespace()

	23.52 Components and Plugins: Core functions to be used by components
	23.52.1 Detailed Description
	23.52.2 Macro Definition Documentation
	23.52.2.1 HWLOC_SHOW_ALL_ERRORS
	23.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

	23.52.3 Function Documentation
	23.52.3.1 hwloc__insert_object_by_cpuset()
	23.52.3.2 hwloc_alloc_setup_object()
	23.52.3.3 hwloc_hide_errors()
	23.52.3.4 hwloc_insert_object_by_parent()
	23.52.3.5 hwloc_obj_add_children_sets()
	23.52.3.6 hwloc_topology_reconnect()

	23.53 Components and Plugins: Filtering objects
	23.53.1 Detailed Description
	23.53.2 Function Documentation
	23.53.2.1 hwloc_filter_check_keep_object()
	23.53.2.2 hwloc_filter_check_keep_object_type()
	23.53.2.3 hwloc_filter_check_osdev_subtype_important()
	23.53.2.4 hwloc_filter_check_pcidev_subtype_important()

	23.54 Components and Plugins: helpers for PCI discovery
	23.54.1 Detailed Description
	23.54.2 Function Documentation
	23.54.2.1 hwloc_pcidisc_check_bridge_type()
	23.54.2.2 hwloc_pcidisc_find_bridge_buses()
	23.54.2.3 hwloc_pcidisc_find_cap()
	23.54.2.4 hwloc_pcidisc_find_linkspeed()
	23.54.2.5 hwloc_pcidisc_tree_attach()
	23.54.2.6 hwloc_pcidisc_tree_insert_by_busid()

	23.55 Components and Plugins: finding PCI objects during other discoveries
	23.55.1 Detailed Description
	23.55.2 Function Documentation
	23.55.2.1 hwloc_pci_find_by_busid()
	23.55.2.2 hwloc_pci_find_parent_by_busid()

	23.56 Components and Plugins: distances
	23.56.1 Detailed Description
	23.56.2 Typedef Documentation
	23.56.2.1 hwloc_backend_distances_add_handle_t

	23.56.3 Function Documentation
	23.56.3.1 hwloc_backend_distances_add_commit()
	23.56.3.2 hwloc_backend_distances_add_create()
	23.56.3.3 hwloc_backend_distances_add_values()

	24 Data Structure Documentation
	24.1 hwloc_backend Struct Reference
	24.1.1 Detailed Description
	24.1.2 Field Documentation
	24.1.2.1 disable
	24.1.2.2 discover
	24.1.2.3 flags
	24.1.2.4 get_pci_busid_cpuset
	24.1.2.5 is_thissystem
	24.1.2.6 phases
	24.1.2.7 private_data

	24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference
	24.2.1 Detailed Description
	24.2.2 Field Documentation
	24.2.2.1 depth
	24.2.2.2 domain
	24.2.2.3 [union]
	24.2.2.4 downstream_type
	24.2.2.5 pci [1/2]
	24.2.2.6 [struct] [2/2]
	24.2.2.7 secondary_bus
	24.2.2.8 subordinate_bus
	24.2.2.9 [union]
	24.2.2.10 upstream_type

	24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference
	24.3.1 Detailed Description
	24.3.2 Field Documentation
	24.3.2.1 associativity
	24.3.2.2 depth
	24.3.2.3 linesize
	24.3.2.4 size
	24.3.2.5 type

	24.4 hwloc_cl_device_pci_bus_info_khr Struct Reference
	24.4.1 Field Documentation
	24.4.1.1 pci_bus
	24.4.1.2 pci_device
	24.4.1.3 pci_domain
	24.4.1.4 pci_function

	24.5 hwloc_cl_device_topology_amd Union Reference
	24.5.1 Field Documentation
	24.5.1.1 bus
	24.5.1.2 data
	24.5.1.3 device
	24.5.1.4 function
	24.5.1.5 [struct]
	24.5.1.6 [struct]
	24.5.1.7 type
	24.5.1.8 unused

	24.6 hwloc_component Struct Reference
	24.6.1 Detailed Description
	24.6.2 Field Documentation
	24.6.2.1 abi
	24.6.2.2 data
	24.6.2.3 finalize
	24.6.2.4 flags
	24.6.2.5 init
	24.6.2.6 type

	24.7 hwloc_disc_component Struct Reference
	24.7.1 Detailed Description
	24.7.2 Field Documentation
	24.7.2.1 enabled_by_default
	24.7.2.2 excluded_phases
	24.7.2.3 instantiate
	24.7.2.4 name
	24.7.2.5 phases
	24.7.2.6 priority

	24.8 hwloc_disc_status Struct Reference
	24.8.1 Detailed Description
	24.8.2 Field Documentation
	24.8.2.1 excluded_phases
	24.8.2.2 flags
	24.8.2.3 phase

	24.9 hwloc_distances_s Struct Reference
	24.9.1 Detailed Description
	24.9.2 Field Documentation
	24.9.2.1 kind
	24.9.2.2 nbobjs
	24.9.2.3 objs
	24.9.2.4 values

	24.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference
	24.10.1 Detailed Description
	24.10.2 Field Documentation
	24.10.2.1 depth
	24.10.2.2 dont_merge
	24.10.2.3 kind
	24.10.2.4 subkind

	24.11 hwloc_info_s Struct Reference
	24.11.1 Detailed Description
	24.11.2 Field Documentation
	24.11.2.1 name
	24.11.2.2 value

	24.12 hwloc_location Struct Reference
	24.12.1 Detailed Description
	24.12.2 Field Documentation
	24.12.2.1 location
	24.12.2.2 type

	24.13 hwloc_location::hwloc_location_u Union Reference
	24.13.1 Detailed Description
	24.13.2 Field Documentation
	24.13.2.1 cpuset
	24.13.2.2 object

	24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference
	24.14.1 Detailed Description
	24.14.2 Field Documentation
	24.14.2.1 count
	24.14.2.2 size

	24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference
	24.15.1 Detailed Description
	24.15.2 Field Documentation
	24.15.2.1 local_memory
	24.15.2.2 page_types
	24.15.2.3 page_types_len

	24.16 hwloc_obj Struct Reference
	24.16.1 Detailed Description
	24.16.2 Field Documentation
	24.16.2.1 arity
	24.16.2.2 attr
	24.16.2.3 children
	24.16.2.4 complete_cpuset
	24.16.2.5 complete_nodeset
	24.16.2.6 cpuset
	24.16.2.7 depth
	24.16.2.8 first_child
	24.16.2.9 gp_index
	24.16.2.10 infos
	24.16.2.11 infos_count
	24.16.2.12 io_arity
	24.16.2.13 io_first_child
	24.16.2.14 last_child
	24.16.2.15 logical_index
	24.16.2.16 memory_arity
	24.16.2.17 memory_first_child
	24.16.2.18 misc_arity
	24.16.2.19 misc_first_child
	24.16.2.20 name
	24.16.2.21 next_cousin
	24.16.2.22 next_sibling
	24.16.2.23 nodeset
	24.16.2.24 os_index
	24.16.2.25 parent
	24.16.2.26 prev_cousin
	24.16.2.27 prev_sibling
	24.16.2.28 sibling_rank
	24.16.2.29 subtype
	24.16.2.30 symmetric_subtree
	24.16.2.31 total_memory
	24.16.2.32 type
	24.16.2.33 userdata

	24.17 hwloc_obj_attr_u Union Reference
	24.17.1 Detailed Description
	24.17.2 Field Documentation
	24.17.2.1 bridge
	24.17.2.2 cache
	24.17.2.3 group
	24.17.2.4 numanode
	24.17.2.5 osdev
	24.17.2.6 pcidev

	24.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference
	24.18.1 Detailed Description
	24.18.2 Field Documentation
	24.18.2.1 type

	24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference
	24.19.1 Detailed Description
	24.19.2 Field Documentation
	24.19.2.1 bus
	24.19.2.2 class_id
	24.19.2.3 dev
	24.19.2.4 device_id
	24.19.2.5 domain
	24.19.2.6 func
	24.19.2.7 linkspeed
	24.19.2.8 revision
	24.19.2.9 subdevice_id
	24.19.2.10 subvendor_id
	24.19.2.11 vendor_id

	24.20 hwloc_topology_cpubind_support Struct Reference
	24.20.1 Detailed Description
	24.20.2 Field Documentation
	24.20.2.1 get_proc_cpubind
	24.20.2.2 get_proc_last_cpu_location
	24.20.2.3 get_thisproc_cpubind
	24.20.2.4 get_thisproc_last_cpu_location
	24.20.2.5 get_thisthread_cpubind
	24.20.2.6 get_thisthread_last_cpu_location
	24.20.2.7 get_thread_cpubind
	24.20.2.8 set_proc_cpubind
	24.20.2.9 set_thisproc_cpubind
	24.20.2.10 set_thisthread_cpubind
	24.20.2.11 set_thread_cpubind

	24.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference
	24.21.1 Field Documentation
	24.21.1.1 next
	24.21.1.2 type

	24.22 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference
	24.22.1 Field Documentation
	24.22.1.1 type

	24.23 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference
	24.23.1 Field Documentation
	24.23.1.1 diff
	24.23.1.2 next
	24.23.1.3 obj_depth
	24.23.1.4 obj_index
	24.23.1.5 type

	24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference
	24.24.1 Detailed Description
	24.24.2 Field Documentation
	24.24.2.1 name
	24.24.2.2 newvalue
	24.24.2.3 oldvalue
	24.24.2.4 type

	24.25 hwloc_topology_diff_obj_attr_u Union Reference
	24.25.1 Detailed Description
	24.25.2 Field Documentation
	24.25.2.1 generic
	24.25.2.2 string
	24.25.2.3 uint64

	24.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference
	24.26.1 Detailed Description
	24.26.2 Field Documentation
	24.26.2.1 index
	24.26.2.2 newvalue
	24.26.2.3 oldvalue
	24.26.2.4 type

	24.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference
	24.27.1 Field Documentation
	24.27.1.1 next
	24.27.1.2 obj_depth
	24.27.1.3 obj_index
	24.27.1.4 type

	24.28 hwloc_topology_diff_u Union Reference
	24.28.1 Detailed Description
	24.28.2 Field Documentation
	24.28.2.1 generic
	24.28.2.2 obj_attr
	24.28.2.3 too_complex

	24.29 hwloc_topology_discovery_support Struct Reference
	24.29.1 Detailed Description
	24.29.2 Field Documentation
	24.29.2.1 cpukind_efficiency
	24.29.2.2 disallowed_numa
	24.29.2.3 disallowed_pu
	24.29.2.4 numa
	24.29.2.5 numa_memory
	24.29.2.6 pu

	24.30 hwloc_topology_membind_support Struct Reference
	24.30.1 Detailed Description
	24.30.2 Field Documentation
	24.30.2.1 alloc_membind
	24.30.2.2 bind_membind
	24.30.2.3 firsttouch_membind
	24.30.2.4 get_area_membind
	24.30.2.5 get_area_memlocation
	24.30.2.6 get_proc_membind
	24.30.2.7 get_thisproc_membind
	24.30.2.8 get_thisthread_membind
	24.30.2.9 interleave_membind
	24.30.2.10 migrate_membind
	24.30.2.11 nexttouch_membind
	24.30.2.12 set_area_membind
	24.30.2.13 set_proc_membind
	24.30.2.14 set_thisproc_membind
	24.30.2.15 set_thisthread_membind
	24.30.2.16 weighted_interleave_membind

	24.31 hwloc_topology_misc_support Struct Reference
	24.31.1 Detailed Description
	24.31.2 Field Documentation
	24.31.2.1 imported_support

	24.32 hwloc_topology_support Struct Reference
	24.32.1 Detailed Description
	24.32.2 Field Documentation
	24.32.2.1 cpubind
	24.32.2.2 discovery
	24.32.2.3 membind
	24.32.2.4 misc

